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Preface

This book is an edited version of the review talks given in the Fourth Aegean School
on Black Holes held in Mytilene on Lesvos Island, Greece, from 17 to 22 September
2007. The aim of this book is not to present another proceedings volume, but rather
an advanced multiauthored textbook which meets the needs of both the postgrad-
uate students and the young researchers in the fields of gravity, relativity, modern
cosmology and astrophysics.

Black holes are the most mysterious and fascinating objects of our universe. They
were predicted by the Einstein’s theory of general relativity and their existence is
the triumph of this theory. A possible detection of gravitational waves by the gravity
experiments will give vital information on the nature and properties of black holes.
On the other hand, the recent advances in string theory offered a new understanding
of the classical and quantum properties of black holes. This book is a guided tour,
by world experts, on the new developments in the physics of the black holes.

In the first part of the book, Samir Mathur discusses the information paradox of
black holes. The information paradox connects quantum mechanics with gravity.
As he says in his article “if quantum gravity effects are confined to within a given
length scale and the vacuum is assumed to be unique, then there will be information
loss”. However, he goes one step further explaining how quantum effects in string
theory resolve this problem.

Another important problem is discussed by Elizabeth Winstanley: do hairy black
holes exist? She reviews the properties of hairy black holes in SU(2) Einstein–
Yang–Mills (EYM) theory in asymptotically anti-de Sitter space and she discusses
recent work in which it is shown that stable hair also exists in SU(N) EYM for ar-
bitrary N. Next, the thermodynamics of black holes is discussed in Steven Carlip’s
article. He reviews what we currently know about black hole thermodynamics and
statistical mechanics, which suggests a rather speculative “universal” characteriza-
tion of the underlying states, and he describes some key open questions.

The first part of the book ends with the discussion of astrophysical black holes. In
Ulrich Sperhake’s article the basic techniques of numerical relativity and black holes
simulations are presented, while Nikolaos Stergioulas describes the way black holes
are formed through gravitational collapse of rotating stars. It is demonstrated, in the
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vi Preface

case of rotating neutron stars which are unstable to quasi-radial oscillations, how a
complete transition from one stationary solution of Einstein’s equations to another
occurs, including the formation of horizons and gravitational wave emission.

The second part of the book presents the new ideas in black hole physics coming
from string theory and braneworlds. One of the basic ingredient of these theories
is the existence of black holes in higher than four dimensions. Niels Obers reviews
some of the recent progress in uncovering the phase structure of black hole solutions
in higher-dimensional vacuum Einstein gravity. Ruth Gregory gives an overview of
braneworlds and she discusses black holes on the brane, the obstructions to find-
ing exact solutions and ways of tackling these difficulties. She describes also some
known solutions and concludes with some open questions and controversies.

The next article by Christos Charmousis describes a higher-order gravity theory,
the Lovelock theory, that generalizes in higher dimensions than four, general relativ-
ity. He discusses a generic staticity theorem, quite similar to Birkhoff’s theorem in
general relativity, which gives charged static black hole solutions. He also presents
Lovelock exact black hole solutions in the context of braneworlds.

This part of the book also includes Sanjeev Seahra’s article on a black string
model of a braneworld black hole. He develops the perturbation formalism for
Randall–Sundrum model and discusses the weak field limit of the model. He solves
numerically the equations of motion for the gravitational waves in the black string
background and discusses their behaviour. Finally, Panagiota Kanti in her article ad-
dresses the topic of the creation of small black holes during particle collisions in a
ground-based accelerator, such as Large Hadron Collider at CERN, in the context of
a higher-dimensional theory. She points out that the most important observable ef-
fect associated with their creation is likely to be the emission of Hawking radiation
during their evaporation process.

The last part of the book deals with the very important issue of perturbations and
stability of black holes in various dimensions. Hideo Kodama in his article explains
the gauge-invariant formulation for perturbations of background spacetimes. He de-
rives his famous master equations for a variety of important spacetimes such as static
black holes, static black branes and rotating black holes in various dimensions. As
applications, he discusses the stability of static black holes in higher dimensions and
flat black branes. The article by George Siopsis discusses the analytic calculation of
quasi-normal modes of various types of perturbations of black holes in both asymp-
totically flat and anti-de Sitter spaces. He pays special attention to low-frequency
modes in anti-de Sitter space because, as it is known, they may have experimental
consequences for the quark-gluon plasma formed in heavy ion collisions.

The Fourth Aegean School and consequently this book became possible with the
kind support of many people and organizations. The school was organized by the
physics department of the National Technical University of Athens and supported
by the physics department of the University of Tennessee. We also received financial
support from the following sources and organizations and this is gratefully acknowl-
edged: Ministry of National Education and Religious Affairs, the Ministry of the
Aegean, Alexander Onassis Foundation, the University of the Aegean, Prefecture of
Lesvos, Municipality of Mytilene. The administrative support of the Fourth Aegean
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School was taken up with great care by Mrs. Fani Siatra. We acknowledge the help
of Vasilis Zamarias who designed and maintained the website of the school.

Last, but not the least, we are grateful to the staff of Springer-Verlag, responsible
for the Lecture Notes in Physics, whose abilities and help contributed greatly to the
appearance of this book.

Athens, June 2008 Lefteris Papantonopoulos
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Chapter 1
What Exactly is the Information Paradox?

S.D. Mathur

Abstract The black hole information paradox tells us something important about
the way quantum mechanics and gravity fit together. In these lectures I try to give
a pedagogical review of the essential physics leading to the paradox, using mostly
pictures. Hawking’s argument is recast as a ‘theorem’: if quantum gravity effects are
confined to within a given length scale and the vacuum is assumed to be unique, then
there will be information loss. We conclude with a brief summary of how quantum
effects in string theory violate the first condition and make the interior of the hole a
‘fuzzball’.

1.1 Introduction

The black hole information paradox is probably the most important issue for fun-
damental physics today. If we cannot understand its resolution, then we cannot un-
derstand how quantum theory and gravity work together. Yet very few people seem
to understand how robust the original Hawking arguments are and what exactly it
would take to resolve the problem.

In this review I try to explain the power of this paradox using mostly pictures.
In Sect. 1.7, I formulate the paradox as a ‘theorem’: if quantum gravity effects are
confined to within the planck length and the vacuum is unique, then there will be
information loss. I conclude with a brief outline of how the paradox is resolved in
string theory: quantum gravity effects are not confined to a bounded length (due to
an effect termed ‘fractionation’), and the information of the hole is spread through-
out its interior, creating a ‘fuzzball’.

S.D. Mathur (B)
Department of Physics, The Ohio State University, Columbus, OH 43210, USA
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Mathur, S.D.: What Exactly is the Information Paradox?. Lect. Notes Phys. 769, 3–48 (2009)
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4 S.D. Mathur

1.2 Puzzles with Black Holes

There are two closely connected problems that arise when we consider quantum
theory in the context of black holes: the ‘entropy puzzle’ and the ‘information para-
dox’.

1.2.1 The Entropy Puzzle

Take a box containing some gas and throw it into a black hole. The gas had some
entropy, so after the gas has vanished into the singularity, we have decreased the
entropy of the Universe, and violated the second law!

Of course this sounds silly: if we threw the box into a trash can, then its entropy
would be inside the trash can, whether we wanted to look in there or not. The black
hole case is a little different however, since it is not clear how we would look into
the hole to see the entropy of the gas. Nevertheless, physical intuition tells us that
the entropy of the hole should have gone up when it swallowed the box of gas.

When the box falls into the hole, it increases the mass of the hole, and therefore
the size of its horizon. Careful work with thermodynamics shows that we should
attribute a ‘Bekenstein entropy’ [1]

Sbek =
A

4G
(1.1)

to the black hole, where A is the area of the horizon and we have set c = h̄ = 1. Then
we have

dStotal

dt
=

dSmatter

dt
+

dSbek

dt
≥ 0 (1.2)

and the second law of thermodynamics is saved.
This looks nice, but thinking a bit more, we find a deeper puzzle. From statistical

physics we know that the entropy of any system is given by S = lnN , where N is
the number of states of the system for the given macroscopic parameters. Applying
this to the black hole, we should find

N = eSbek (1.3)

states for a black hole of given mass. Note that (1.1) is the area of the horizon
measured in planck units. Thus for a solar mass black hole with a horizon radius
∼3 km, we would have

N ∼ 101077
(1.4)

states, an enormous number! Where should we look for these microstates? Since
Sbek is proportional to the horizon area, people tried to look for small ‘deformation
modes’ of the horizon. But it turns out that there is no such deformation in general;
any excitation near the horizon either falls to the singularity or flows off to infinity,
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leaving a spherically symmetric horizon again. This observation came to be called
‘black holes have no hair’, signifying that the horizon cannot hold any information
in its vicinity. But if we find a unique geometry for the hole then the entropy would
be S = ln1 = 0, in sharp contrast to (1.4).

One may therefore think that the entropy is somehow at the singularity; after
all the matter that made the hole in the first place disappeared into this singularity.
In that case we would not see the differences between microstates in the classical
geometry of the hole, and quantum effects at the singularity would differentiate the
different states. But as we will see now, this possibility leads to an even more serious
problem: the information paradox.

1.2.2 The Information Paradox

We have seen above that a black hole has entropy Sbek. It has an energy E = M,
where M is the mass of the hole. One may therefore ask if we could have the usual
thermodynamic relation

T dSbek = dE . (1.5)

This would imply that the black hole has a temperature

T =
(

dS
dE

)−1

=
(

d
dM

(
4π(2GM)2

4G

))−1

=
1

8πGM
. (1.6)

If the black hole has a temperature, should it radiate? Temperature by itself does
not imply radiation, but by the law of detailed balance in thermodynamics what we
can say is that if the black hole can absorb quanta of a certain wavenumber with
cross section σ(k), then it should radiate the same quanta at a rate

Γ =
∫

d3k
(2π)3σ(k)

1

e
ω(k)

T −1
. (1.7)

But we know that σ(k) is nonzero, since quanta can fall into the hole. Thus we
must get radiation from the hole.

But the classical geometry of the hole does not allow any worldlines to emerge
from the horizon! How then will we get this radiation? The answer, discovered by
Hawking [2, 3], is that we must consider quantum processes, more precisely quan-
tum fluctuations of the vacuum. In the vacuum pairs of particles and antiparticles are
continuously being created and annihilated. Consider such fluctuations for electron–
positron pairs. Suppose we apply a strong electric field in a region which is pure vac-
uum. When an electron–positron pair is created, the electron gets pulled one way by
the field and the positron gets pulled the other way. Thus instead of annihilation
of the pair, we can get creation of real (instead of virtual) electrons and positrons
which can be collected on opposite ends of the vacuum region. Thus we get a current
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flowing through the space even though there is no material medium filling the region
where the electric field is applied. This is called the ‘Schwinger effect’.

A similar effect happens with the black hole, with the effect of the electric field
now replaced by the gravitational field. We do not have particles that are charged in
opposite ways under gravity. But the attraction of the black hole falls off with radius,
so if one member of a particle–antiparticle pair is just outside the horizon it can flow
off to infinity, while if the other member of the pair is just inside the horizon then
it can get sucked into the hole. The particles flowing off to infinity represent the
‘Hawking radiation’ coming out of the black hole. Doing a detailed computation,
one finds that the rate of this radiation is given by (1.7). Thus we seem to have a
very nice thermodynamical physics of the black hole. The hole has entropy, energy,
and temperature and radiates as a thermal body should.

But there is a deep problem arising out of the way in which this radiation is
created by the black hole. As we will discuss in detail in the coming sections, the
radiation which emerges from the hole is not in a ‘pure quantum state’. Instead, the
emitted quanta are in a ‘mixed state’ with excitations which stay inside the hole.
There is nothing wrong in this by itself, but the problem comes at the next step. The
hole loses mass because of the radiation and eventually disappears. Then the quanta
in the radiation outside the hole are left in a state that is ‘mixed’, but we cannot
see anything that they are mixed with! Thus the state of the system has become a
‘mixed’ state in a fundamental way. This does not happen in usual quantum mechan-
ics, where we start with a pure state |Ψ〉 and evolve it by some Hamiltonian H as
|Ψ ′〉 = e−iHt |Ψ〉 to get another pure state at the end. We will describe mixed states
in detail later, but for now we note that mixed states arise in usual physics when we
coarse-grain over some variables and thereby discard some information about a sys-
tem. This coarse-graining is done for convenience, so that we can extract the gross
behavior of a system without keeping all its fine details, and is a standard procedure
in statistical mechanics. But there is always a ‘fine-grained’ description available
with all information about the state, so that underlying the full system there is al-
ways a pure state. With black holes we seem to be getting a loss of information in
a fundamental way. We are not throwing away information for convenience; rather
we cannot get a pure state even if we wanted. This implies a fundamental change in
quantum theory, and Hawking advocated that in the presence of gravity (which will
make black holes) we should not formulate quantum mechanics with pure states
and unitary evolution operators. Rather, we should think of mixed states as being
basic and describe these in terms of their ‘density matrices’. The evolution of these
density matrices will be given not by the S matrix but by a dollar matrix $ [2, 3].

This was a radical proposal, and most physicists were not happy to abandon or-
dinary quantum mechanics when it works so well in all other contexts. But if we are
to bypass this ‘information paradox’ then we have to see how exactly this radiation
is emitted and what changes to the physics could make this radiation emerge in a
pure state. Enormous effort has been spent on this problem. With string theory, we
will see that we can now obtain a resolution of the paradox. Perhaps it should not
be surprising that this resolution itself comes with a radical change in our under-
standing of how quantum gravity works. Earlier attempts at resolving the paradox
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had assumed that quantum gravity effects operate over distances of order the planck
length or less. This seems natural since the only fundamental length scale that we
can make out of the fundamental constants c, h̄, and G is

lp =
(

h̄G
c3

) 1
2

∼ 10−33 cm. (1.8)

As we will see below, if it were indeed true that all quantum gravity effects
were confined to within a length scale like lp (or any other fixed length scale) then
we would get information loss and quantum mechanics would need to be changed.
But how can we get any other natural length scale for quantum gravity effects? If
we collide two gravitons then it is true that quantum gravity effects should start
when the wavelengths of the gravitons become order lp. But a black hole is made
up of a large number of quanta N; the larger the black hole the larger this num-
ber N. Then we have to ask if quantum gravity effects extend over distances ∼ lp

or over distances Nα lp where α is some appropriate constant. In string theory we
find that the latter is true and that N,α are such that the length scale of quantum
gravity effects becomes of the order of the radius of the horizon. This changes the
process by which the radiation is emitted, and the radiation can emerge in a pure
state.

1.2.3 The Plan of the Review

There exist many reviews on the subject of black holes, and there are also re-
views of the ‘fuzzball’ structure emerging from string theory [4–6]. What I will
do here is a bit different: I will try to give a detailed pictorial description of the
information problem. We will study the black hole geometry in detail and see how
wavemodes evolve to create Hawking radiation. Then we will discuss the ‘mixed’
nature of the quantum state that is created in this radiation process. Most impor-
tantly, we will discuss why the argument of Hawking showing information loss is
robust and can only be bypassed by a radical change in one of the fundamental as-
sumptions that we usually make about quantum gravity. We will close with a brief
summary of black holes in string theory and the fuzzball nature of the black hole
interior.

1.3 Particle Creation in Curved Space

The story of Hawking radiation really begins with the understanding of particle
creation in curved spacetime (for reviews see [7, 8]). Particles are described in terms
of an underlying quantum field, say a scalar field φ . We can write a covariant action
for this field and do a path integral. But how do we define particles? In flat space we
expand the field operator as
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φ̂ =∑
k

1√
V

1√
2ω

(
âkeik·x−iωt + â†

ke−ik·x+iωt
)

, (1.9)

where V is the volume of the spatial box where we have taken the field to live and
ω =

√
|k|2 +m2 for a field with mass m. The vacuum is the state annihilated by all

the â:
âk|0〉 = 0, (1.10)

and the â†
k create particles.

In curved spacetime, on the other hand, there is no canonical definition of parti-
cles. We can choose any coordinate t for time and decompose the field into positive
and negative frequency modes with respect to this time t. Let the positive frequency
modes be called f (x); then their complex conjugates give negative frequency modes
f ∗(x). The field operator can be expanded as

φ̂(x) =∑
n

(
ân fn(x)+ â†

n f ∗n (x)
)

. (1.11)

Then we can define a vacuum state as one that is annihilated by all the annihila-
tion operators

ân|0〉a = 0 . (1.12)

The creation operators generate particles; for example a 1-particle state would be

|ψ〉 = â†
n|0〉a . (1.13)

We have added the subscript a to the vacuum state to indicate that the vacuum is
defined with respect to the operators ân. But since there is no unique choice of the
time coordinate t, we can choose a different one t̃. We will then have a different set
of positive and negative frequency modes and an expansion

φ̂(x) =∑
n

(
b̂nhn(x)+ b̂†

nh∗n(x)
)

. (1.14)

Now the vacuum would be defined as

b̂n|0〉b = 0 (1.15)

and the b̂†
n would create particles.

The main point now is that a person using the operators â, â† would think that
|0〉a was a vacuum, but he would not think that the state |0〉b was a vacuum – he
would find it to contain particles of the type created by the â†

n. Let us see how one
finds exactly how many â† particles there are in the state |0〉b. The mode functions
fn are normalized using an inner product defined as follows. Take any spacelike
hypersurface, with volume element dΣμ (thus the vector dΣμ points normal to the
hypersurface and has a value equal to the volume of the surface element). Then

( f ,g) ≡−i
∫

dΣμ (
f∂μg∗ −g∗∂μ f

)
. (1.16)
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Under this inner product we will have

( fm, fn) = δmn, ( fm, f ∗n ) = 0, ( f ∗m, f ∗n ) = −δmn . (1.17)

Now from the two different expansions of φ̂ we have

∑
n

(
ân fn(x)+ â†

n f ∗n (x)
)

=∑
n

(
b̂nhn(x)+ b̂†

nh∗n(x)
)

. (1.18)

Taking the inner product with fm on each side, we get

âm =∑
n

(hn, fm)b̂n +∑
n

(h∗n, fm)b̂†
n ≡∑

n
αmnb̂n +∑

n
βmnb̂†

n . (1.19)

Thus the vacuum |0〉a satisfies

0 = âm|0〉a =
(
∑
n
αmnb̂n +∑

n
βmnb̂†

n

)
|0〉a . (1.20)

Let us see how to solve this equation. Suppose we had just one mode, with a
relation

(b+ γb†)|0〉a = 0 . (1.21)

The solution to this equation is of the form

|0〉a = Ceμ b̂†b̂† |0〉b , (1.22)

where C is a normalization constant and μ is a number that we have to determine.
Expand the exponential in a power series

eμ b̂†b̂†
=∑

n

μn

n!
(b̂†b̂†)n . (1.23)

With a little effort using the commutator [b̂, b̂†] = 1, we find that

b̂(b̂†b̂†)n = (b̂†b̂†)nb̂+2nb̂†(b̂†b̂†)n−1 . (1.24)

Putting this in the series for the exponential, we find that

b̂eμ b̂†b̂† |0〉b = 2μ b̂†eμ b̂†b̂† |0〉b . (1.25)

Looking at (1.21) we see that we should choose μ = − γ
2 , and we get

|0〉a = Ce−
γ
2 b̂†b̂† |0〉b . (1.26)

This state has the form

|0〉a = C|0〉b +C2b̂†b̂†|0〉b +C4b̂†b̂†b̂†b̂†|0〉b + · · · , (1.27)
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so it looks like a part that is the b vacuum, a part that has two particles of type b, a
part with four such particles, and so on.

Returning to our full equation (1.20) we have the solution

|0〉a = Ce−
1
2 ∑m,n b̂†

mγmnb̂†
n |0〉b , (1.28)

where the matrix γ is symmetric and is given by

γ =
1
2

(
α−1β +(α−1β )T )

. (1.29)

To summarize, there are many ways to define time and therefore many ways
to define the vacuum and particles in curved space. The vacuum in one definition
looks, in general, full of particle pairs in other definitions. How then are we going
to do any physics with these particles?

What helps is that we will usually detect particles in some region which is far
away from the region where spacetime is curved, for example at asymptotic infinity
in a black hole geometry. There is a natural choice of coordinates at infinity, in
which the metric looks like ημν . We can still make boosts that keep the metric in
this form, but the change of time coordinate under these boosts does not change the
vacuum. What happens is that positive frequency modes change to other positive
frequency modes, giving the expected change of the energy of a quantum when it is
viewed from a moving frame.

But even though this may be a natural choice of coordinates, giving a natural
definition of particles, we may still ask why we cannot use some other curvilinear
coordinate system and its corresponding particles. The point is that we have to know
the following physics at some point: what is the energy carried by these particles?
This information is not given by the definition of the particle modes; rather, we need
to know the energy–momentum tensor for these particle states. For the physical
fields that we consider, we assume that the particles defined in the flat coordinate
system with metric ημν are the ones which give the expected physical energy of the
state, an energy which shows up, for example, in the gravitational attraction between
these particles.

So there is no ambiguity in how particles are defined at infinity, but if there is
some region of spacetime which is curved, then wavemodes that travel through that
region and back out to spatial infinity can have a nontrivial number of particles at
the end, even though they may have started with no particles excited in them at the
start. What we need now is to get some physical feeling for the length and time
scales involved in this process of particle creation.

1.3.1 Particle Creation: Physical Picture

Let us first get a simpler picture of why particles can get created when spacetime is
curved. We know that each Fourier mode of a quantum field behaves like a harmonic
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oscillator, and if we are in the excited state |n〉 for this oscillator then we have n
particles in this Fourier mode. Thus the amplitude of this Fourier mode, which we
call a, has a Lagrangian of the form

L =
1
2

ȧ2 − 1
2
ω2a2 . (1.30)

But as we move to later times, the spacetime can distort, and the frequency of the
mode can change, so that we get

L′ =
1
2

ȧ2 − 1
2
ω ′2a2 . (1.31)

We picture this situation in Fig. 1.1. Figure 1.1(a) shows the potential where the
frequency is ω . Let us require that here no particles are present in this Fourier mode.
Then we will have the vacuum wavefunction |0〉 for this harmonic oscillator. Now
suppose we change the potential to the one for frequency ω ′; this potential is shown
in Fig. 1.1(b). For this new potential, the vacuum state is a different wavefunction
from the one for frequency ω , and we sketch it in Fig. 1.1(b).

First suppose that the change of frequency from ω to ω ′ was very slow. Then we
will find that the vacuum wavefunction will keep changing as the potential changes
in such a way that it remains the vacuum state for whatever potential we have at
any given time. In particular when we reach the final potential with frequency ω ′,
the vacuum wavefunction of Fig. 1.1(a) will have become the vacuum wavefunction
of Fig. 1.1(b). This fact follows from the ‘adiabatic theorem’, which describes the
evolution of states when the potential changes slowly.

Now consider the opposite limit, where the potential changes from the one in
Fig. 1.1(a) to the one in Fig. 1.1(b) very quickly. Then the wavefunction has had
hardly any time to evolve, and we get the situation in Fig. 1.1(c). The potential is
that for frequency ω ′, but the wavefunction is still the vacuum wavefunction for
frequency ω . This is not the vacuum wavefunction for frequency ω ′, but we can
expand it in terms of the wavefunctions |n〉ω ′ which describe the level n excitation
of the harmonic oscillator for frequency ω ′:

Fig. 1.1 (a) The potential characterizing a given Fourier mode, and the vacuum wavefunction
for this potential. (b) If the spacetime distorts, the potential changes to a new one, with its own
vacuum wavefunction. (c) If the potential changes suddenly, we have the new potential but the old
wavefunction, which will not be the vacuum wavefunction for this changed potential; thus we will
see particles
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|0〉ω = c0|0〉ω ′ + c1|1〉ω ′ .+ c2|2〉ω ′ + · · · . (1.32)

Actually since the wavefunction that we have is symmetric under reflections a →
−a, we will get only the even levels |n〉 in our expansion

|0〉ω = c0|0〉ω ′ + c2|2〉ω ′ + c4|4〉ω ′ + · · · . (1.33)

This is like the expansion (1.27), and a little more effort shows that the coeffi-
cients cn will be of the form that will give the exponential form (1.26).

Thus under slow changes of the potential the Fourier mode remains in a vacuum
state, while if the changes are fast then the Fourier mode gets populated by particle
pairs. But what is the timescale that distinguishes slow changes from fast ones?
The only natural timescale in the problem is the one given by frequency of the
oscillator:

ΔT ∼ ω−1 ∼ ω ′−1 , (1.34)

where we have assumed that the two frequencies involved are of the same order.
If the potential changes over times that are small compared to ΔT , then in general
particle pairs will be produced.

We can now put this discussion in the context of curved spacetime. Let the vari-
ations of the metric be characterized by the length scale L; i.e., the length scale for
variations of gab is ∼ L in the space and time directions, and the region under con-
sideration also has length ∼ L in the space and time directions. We assume that the
metric varies significantly (i.e., δg ∼ g) in this region. Then the particles produced
in this region will have a wavelength ∼ L and the number of produced particles will
be of order unity. Thus there is no other ‘large dimensionless number’ appearing
in the physics, and the length scale L governs the qualitative features of particle
production.

An example of such a metric variation would be if we take a star with radius
6GM (so it is not close to being a black hole), and then this star shrinks to a size
4GM (still not close to a black hole) over a time of order ∼ GM. Then in this
process we would produce order unity number of quanta for the scalar field, and
these quanta will have wavelengths ∼ GM. After the star settles down to its new
size, the metric becomes time independent again, and there is no further particle
production.

As it stands, this particle production is a very small effect, from the point of
view of energetics. In the above example, the length GM is of order kilometers or
more, so the few quanta we produce will have wavelengths of the order of kilome-
ters. The energy of these quanta will be very small, much smaller than the energy
M present in the star which created the changing metric. So particle production
can be ignored in most cases where the metric is changing on astrophysical length
scales.

We will see that a quite different situation emerges for the black hole, where
particle production keeps going on until all the mass of the black hole is exhausted.
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1.3.2 Particle Production in Black Holes

The metric of a Schwarzschild hole is often written as

ds2 = −
(

1− 2GM
r

)
dt2 +

dr2

1− 2GM
r

+ r2(dθ 2 + sin2 θdφ 2) . (1.35)

This metric looks time independent, so we might think at first that there should
be no particle production. If we had a time-independent geometry for a star, there
would indeed be no particle production. What is different in the black hole case?
The point is that the coordinate system in the above metric covers only a part of the
spacetime – the part outside the horizon r = 2GM. Once we look at the full metric
we will not see a time-independent geometry. The full geometry is traditionally
described by a Penrose diagram, which we sketch in Fig. 1.2. The region of this
diagram where the particle production will take place is indicated by the box with
dotted outline around the horizon.

From the Penrose diagram we can easily see which point is in the causal future
of which point, but since lengths have been ‘conformally scaled’ we cannot get a
good idea of relative lengths at different locations on the diagram. Thus in Fig. 1.3
we make a schematic sketch of the shaded region in Fig. 1.2. The horizontal axis is
r, which is a very geometric variable in the problem – the value of r at any radius is
given by writing the area of the 2-sphere at that point as 4πr2. The line at r = 0 is
the ‘center’ of the black hole; thus this is a region of high curvature (the singularity)
after the black hole forms. The line r = 2GM is the horizon. Spatial infinity is on
the right, at r → ∞.

Fig. 1.2 The Penrose diagram
for a black hole (without
the backreaction effects of
Hawking evaporation). Null
rays are straight lines at 45o.
Thus we see that the horizon
is a null surface. Hawking
radiation collects at future
null infinity
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Fig. 1.3 A schematic picture of the dotted box in Fig. 1.2. The horizon has been rotated to be
vertical. One coordinate is r. The other axis has been called τ , but there is no canonical choice of
τ (the metric will degenerate at the horizon anyway if we try to make it independent of τ). We see
that the null geodesics on the two sides of the horizon move away from r = 2GM as they evolve

The vertical axis in Fig. 1.3 is called τ; it is some time coordinate that we have
introduced to complement r. At large r we let τ → t, where t is the Schwarzschild
time. The metric will not be good everywhere in the coordinates (r,τ); it will de-
generate at the horizon. This will not matter since all we want to do with the help
of this figure is show how geodesics near the horizon evolve to smaller or larger r
values.

A massless particle that is at the horizon and trying its best to fly out never man-
ages to escape, but stays on the horizon. This can be seen as follows. The massless
particle follows a null geodesic. Let us allow no angular part to its momentum to
ensure that all the momentum is directed radially outward in the attempt to escape.
Thus from the metric (1.35) we will have

0 = ds2 = −
(

1− 2GM
r

)
dt2 +

dr2

1− 2GM
r

, (1.36)

which gives

dr =
(

1− 2GM
r

)
dt . (1.37)

So if we are on the horizon r = 2GM, we get dr = 0, i.e., the particle stays on the
horizon.

What if the particle started slightly outside the horizon and tried to fly radially
outward? Now it can escape, so after some time the particle will reach out to a larger
radius, say r ∼ 3GM. This null geodesic starts out near the horizon, but ‘peels off’
toward infinity.
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Similarly, consider a massless particle that starts a little inside the horizon and
tries to fly radially outward. This time it cannot escape the hole or even remain
where it started; this null geodesic ‘peels off’ and falls in toward smaller r. The
figure shows the geodesic reaching the radius r ∼ GM which is inside the hole,
though still comfortably away from the singularity.

Now we see that in this vicinity of the horizon, there is a ‘stretching’ of spacetime
going on. A small region near the horizon gets ‘pulled apart’, with the part inside
the horizon moving deeper in and the part outside the horizon moving out. We will
make this more precise later, but we can now see that the metric indeed has a time
dependence which can cause particle creation. Moreover, this stretching goes on as
long as the black hole lasts, since whenever we have the horizon we will see such a
‘peeling off’ of null geodesics from the two sides of the horizon. Thus if there will
be particle production from this stretching of spacetime, it will keep going on till
the black hole disappears and there is no more horizon.

1.4 Slicing the Black Hole Geometry

We have seen that the Schwarzschild coordinates cover only the exterior of the hori-
zon, and so do not give a useful description of the spacetime for the purposes of
understanding Hawking radiation. What we need is a set of spacelike slices that ‘fo-
liate’ the spacetime geometry, covering both the outside and the inside of the hole.
Let us see how to make such spacelike slices.

Consider the slices sketched in Fig. 1.4. Far outside the horizon, we would like to
have the spacelike slice look quite like a spacelike slice in ordinary flat spacetime.
Thus we let it be the surface t = constant, all the way from infinity to say r = 3GM,
a point that is comfortably far away from the vicinity of the horizon. We call this
part of the spacelike surface Sout .

What should we do inside the horizon? From the metric (1.35) we see that inside
the horizon r = 2GM space and time interchange roles; i.e., the t direction is space-
like while the r direction is timelike. Thus for the part of the slice inside the horizon
we use a r = constant slice. Let us take this slice at r = GM, comfortably far away
from the horizon at r = 2GM and also from the singularity at r = 0. Let us call this
part of the spacelike surface Sin.

We must now connect these two parts of our spacelike surface. It is not hard to
convince oneself that this can be done with a smooth ‘connector’ segment, which is
everywhere spacelike. Let us call this segment of the spacelike surface Scon.

One might be worried that this spacelike slice is not covering the region near
r = 0. Let us assume that the black hole formed at some time t ∼ tinitial . Then for
t � tinitial , there was no singularity at r = 0. Thus imagine extending the part Sin of
the slice down to a time before this singularity, whereupon we bend it smoothly to
reach r = 0. (This part of the slice is not depicted in the figure, since it will not be
of immediate use to us in the discussions that follow.)
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Fig. 1.4 Constructing a slicing of the black hole geometry. For r > 3GM we have the part Sout as
a t = constant slice. The ‘connector’ part Scon is almost the same on all slices and has a smooth
intrinsic metric as the surface crosses the horizon. The inner part of the slice Sin is a r = constant
surface, with the value of r kept away from the singularity at r = 0. The coordinate τ is only
schematic; it will degenerate at the horizon

All this makes one spacelike slice, but what we need is a family of such slices
to foliate the region of spacetime that is of interest. Let us try to make a ‘later’
slice in our foliation. For the part Sout we know what this means: we should take
t = constant with a larger value of t. What do we do for the inside part Sin? If we
wish to advance this part forward in the direction that is locally timelike, then we
have to move it inward toward smaller r (recall that r is the timelike direction inside
the horizon). If we keep moving our successive slices toward smaller r, we will soon
reach the vicinity of the singularity at r = 0, which we did not want to do. So we will
move each successive slice to a smaller r value but only by a very small amount; we
will make this amount smaller and smaller so that the slices asymptote to say the
surface r = GM

2 , still comfortably away from the singularity at r = 0.
So what is the essential difference between one slice and a later slice? The

outer part Sout has just moved up in time τ , but not changed its intrinsic geom-
etry. The ‘connector’ part Scon has not changed its intrinsic geometry much ei-
ther. The nontrivial change has been in the inner part Sin, which has not changed
in its r location very much, but it has become longer; there is an extra part indi-
cated by the dotted segment that has emerged to allow Sin to connect to the rest of
the slice.

In the r− τ plane of Fig. 1.4 this may look a strange set of slices, so we redraw
them a bit differently in Fig. 1.5. The lowest slice corresponds to the time before
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Fig. 1.5 The slices of Fig. 1.4
redrawn in a different way to
show the changes from one
slice to the next

the black hole is formed. Thus it is essentially a flat slice t = constant all through.
On later slices, the part on the right, which is in the ‘outer’ region, keeps advancing
forward in time. The part on the ‘inside’ advances very little. As a consequence
there is a lot of stretching in the part that connects the part on the left to the part on
the right. Later and later slices have to stretch more and more in this region.

In any spacetime we always have the freedom of pushing forward our spacelike
slice at different rates at different locations (Wheeler terms this ‘many-fingered’
time in general relativity). But note that in flat spacetime, for example, we could not
have done what we see in Fig. 1.5. Thus consider flat spacetime, and let the first
slice be t = constant. Now for later slices we try to keep the left side of the slice
fixed (or advancing very slightly) and we make the right side move up to later times.
Then after a while we will find that the part of the slice joining these two parts is
no longer spacelike; it will become null somewhere and then become timelike. Thus
the kind of slices that we see in Fig. 1.5 is particular to the black hole geometry, and
the infinite stretching that we see in these slices can be traced to the presence of a
horizon.

Finally, in Fig. 1.6 we depict the slices on the Penrose diagram. The later the time
slice, the more it moves up near future null infinity before coming into the horizon.
Thus the later and later time slices will be able to capture more and more of the
Hawking radiation emitted from the hole.

The important fact about slices in the black hole geometry is the following. In
Schwarzschild coordinates both gtt and grr become singular at the horizon: one
vanishes and one diverges. With the slices we have chosen the spatial metric along
the slices remains regular as we cross the horizon. If we allow our slices to reach the
singularity at r = 0, then we can foliate the geometry by slices which are spacelike,
and which are all similar to each other as far as their intrinsic geometry is concerned.
Then why will there be particle production? The point is that there is no timelike
killing vector in the geometry. Suppose we draw a vector connecting a point at
r = r0 on one slice with the point at r = r0 on the next slice. If this vector was
timelike everywhere we could use it to define time evolution, and everything would
look time independent: the slices do not change, and the metric with this choice
of time direction will look time independent. But this vector will not be timelike
everywhere; it will become null on the horizon and be spacelike inside the horizon.

We have taken extra care to make our slices not approach the singularity – we
let them follow a r = constant path to an early enough stage where the singularity
had not formed, and then take them in to r = 0. This feature of the slices is not
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Fig. 1.6 The slices drawn on
the Penrose diagram. Later
slices go up higher near future
null infinity and will thus
capture more of the Hawking
radiation

directly related to the production of particles in Hawking radiation, but we have
done the slicing in this way so that the evolution stays in a domain where curvature
is everywhere low and so classical gravity would appear to be trustworthy.

To summarize, the central point that we see with these different ways of exhibit-
ing the slices is that the geometry of the black hole is not really a time-independent
one, and particle production can therefore be expected to happen.

1.4.1 The Wavemodes

Let us now look at the wavemodes of the scalar field in the black hole geometry.
We will look at non-rotating holes, so the metric is spherically symmetric, and

we can decompose the modes of the scalar field φ into spherical harmonics. Most of
the Hawking radiation turns out to be in the lowest harmonic, the s-wave, so we will
just focus our attention on this l = 0 mode; the physics extends in an identical way
to the other harmonics. We will suppress the θ ,φ coordinates, drawing all waves
only in the r, t plane.

To study the emission from the hole, in principle we should solve the wave equa-
tion in the metric of the black hole. This is complicated, though many approxima-
tions have been developed to carry out this computation and a lot of numerical work
has been done as well. But the basic ideas involved in the computation of Hawking
radiation can be understood by using a very simple description of the wavemodes:
solving them by the ‘eikonal approximation’, which we now describe.

Since we have taken the harmonic l = 0, all we have to do is describe the wave in
the r, t plane. In flat space, we have two kinds of modes: ingoing modes and outgoing
modes. For higher l, there is a ‘centrifugal barrier’ from angular momentum, and
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there will not be such a clean separation between ingoing and outgoing waves at
small r. But if we are looking at a high-frequency mode then this angular momentum
term is ignorable, and the physics again splits into an ingoing and an outgoing mode.
From the wave equation �φ = 0 we find that these ingoing and outgoing modes
travel at the speed of light.

Consider an outgoing wavemode, and look at it on a spacelike hypersurface. Then
we would see a sinusoidal oscillation of its phase with some wavelength which we
call λ . We assume that

λ � GM . (1.38)

Here GM is the scale over which the metric of the black hole varies, so we are
asking that the wavelength be much smaller than the scale over which the metric is
curved. Thus the wave oscillations will locally look like oscillations on a piece of
flat spacetime. It will turn out that as our wavemodes evolve their wavelength will
increase, and will finally become order ∼ GM, but by the time that happens they
would be waves traveling near infinity where we understand their physics very well.
Thus while we may find the overall radiation rate to be incorrect by a factor of order
unity because λ ∼ GM near the end of the evolution, the basic problem created by
the ‘entanglement of Hawking pairs’ will be very robust and will not be affected by
the errors caused by our approximation.

In Fig. 1.7 we sketch the wavemode as seen on a spacelike surface. At each point
on the surface, the wavemode is a complex number given by an amplitude and a
phase. Let this be an outgoing mode, of the type eik(r−t) at infinity. Take a point A on
this spacelike surface, and suppose the phase of the wavemode is eiφ0 at this point.
Draw a radial null geodesic through A, going out to infinity. Assign the phase eiφ0

to all points on this null geodesic. Do the same for all points on the initial surface.
The amplitude of the wavemode at point A also determines the amplitude at all
points along the null geodesic through A, but we should note that in d +1 spacetime

Fig. 1.7 The wavemode on
an initial spacelike surface
is evolved by letting the
phase be constant on outgoing
null rays. At infinity we can
describe the mode by its
intersection with a space-
like surface, which gives a
function ∼ eikr . Alternatively
we can give its intersection
with a timelike surface which
gives a function ∼ e−ikt .
Lastly, we can describe the
mode by giving the phase on
different outgoing null rays,
which gives a function e−ikX−
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dimensions the amplitude of a spherical wave falls off as 1

r
d−1

2
, so we put in this

decrease with r when finding the amplitude at all points along the null geodesic.
This process gives us a wavemode evolved to all points to the future of our space-

like hypersurface. If the wavelength was everywhere small compared to the curva-
ture of the manifold, this would be a very good approximation to the actual solution
of the wave equation; as it is, it will be an approximate solution that will serve our
purpose in what follows. To summarize, we have evolved the outgoing wavemode
by assuming that the phase of the mode stays constant along the outgoing null rays.

We can describe the wavemode in a few different ways. First, we can ‘catch’ it on
a spacelike surface as we did in Fig. 1.7; in this case we see a waveform eikr on the
spacelike surface. We can also ‘catch’ the wavemode by looking at its intersection
with a timelike surface r = constant. Then on this timelike surface we will see a
phase like e−iωt ; this can be seen from the way the null lines intersect the timelike
surface r = constant. Third we can describe the wavemode by giving the phase on
each null ray. For outgoing waves the null rays are of the form

t − r ≡ X− = constant . (1.39)

Thus we can write outgoing modes as e−ikX−
, or mode generally as f (X−). We will

generally chose the function f so as to make a localized wavepacket.

1.5 The Evolution of Modes in the Black Hole

In this section we will put together a lot of the tools we developed in the above
discussion. Our goal is to look at wavemodes in the black hole background and to
see how they evolve. At the end of this evolution the initial vacuum modes will be
populated with particles. What we wish to understand is the nature of this state with
particles, in particular, how the various particles are correlated or ‘entangled’ with
each other. The entire essence of the information paradox lies in understanding this
entanglement.

Let us begin our discussion with a look at the Penrose diagram again, sketched in
Fig. 1.8(a). We have drawn a circle around the region that is of immediate interest
to us. In Fig. 1.8(b) we have drawn an expanded view of this region. The important
thing about this region of spacetime is that in the traditional black hole picture this is
a region of ‘empty space’. Thus there is no large curvature here or any other matter
that our scalar field φ could interact with. To understand better the state of the scalar
field here, consider the evolution of field modes depicted in Fig. 1.8(a). Vacuum
modes start off at past null infinity as ingoing modes. They reach r = 0 and scatter
back as outgoing modes. At this stage there is no singularity at r = 0, so we just
get outgoing vacuum modes after this scattering. These outgoing modes then show
up in the circled region of Fig. 1.8(a). We are interested in the further evolution of
these modes.
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Fig. 1.8 (a) The region around the horizon is a vacuum. (b) An outgoing wavemode on an initial
spacelike surface is evolved by letting the phase be constant on outgoing null geodescis

The outgoing field mode is drawn in more detail in Fig. 1.8(b), where we have
caught the mode on a spacelike surface which we will call our ‘initial slice’. We
follow our above described method of evolving the wavemodes by letting the phase
be constant along outgoing radial null geodesics. These null geodesics look like
straight lines on the Penrose diagram, so at first it might seem that the wavelength of
the mode is not changing as we follow the mode out toward infinity. This is not true,
since in the Penrose diagram the actual distances between points are large when the
points are near infinity. (In drawing the Penrose diagram we squeeze the spacetime
in a ‘conformal’ way so that all of spacetime fits in a finite box; this automatically
squeezes points near infinity by a large amount.)

What we really want to see is how the wavelength of the mode changes as the
mode is evolved. So in Fig. 1.9 we sketch the evolution in the r−τ diagram that we
discussed above. The initial slice is drawn again, with the outgoing wavemode on
it. The lines of constant phase are drawn too, but now they do not look like straight
lines. We had seen that the horizon itself is an outgoing null geodesic that stays at
all times at r = 2GM. The rays starting slightly outside the horizon eventually ‘peel
off’ and go to spatial infinity, while those starting slightly inside ‘peel off’ and fall
in toward small r. Thus the wavemode will get distorted as it evolves.

What we want to do now is to ‘catch’ the wavemode on a later spacelike slice.
By following the null rays, we can obtain the phase of the wavemode all along this
later slice. We can see that there is quite a distortion between the wavemode as
seen on the initial spacelike slice and the wavemode as it is ‘caught’ on this later
slice, and the changes come because the null geodesics just inside and outside the
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Fig. 1.9 A wavemode which is a positive frequency mode on the initial spacelike surface gets
distorted when it evolves to a later spacelike surface; the mode will not be made of purely positive
frequencies after the distortion

horizon evolve in quite different ways. But if the wavemode is distorted, there can
be particle creation. We will now look at the distortion in much more detail and
discuss the nature of this particle creation.

1.5.1 The Coordinate Map Giving the Expansion

Consider the vicinity of the horizon sketched in Fig. 1.8(a). The local geometry is
approximately flat space, and the field modes are in the vacuum state. Let us use
null coordinates y+,y− to describe the spacetime here (recall that the angular S2 is
suppressed throughout). The outgoing modes, which are of interest to us, are then
of the form

ψinitial ∼ eiky− . (1.40)

We will assume that k > 0. In the expansion of the field φ̂ the positive frequency
modes multiply the annihilation operators âk. We will write the negative frequency
modes as e−iky−; these will multiply the creation operators.

Now let us see what coordinates would be good on the late time spacelike slice,
sketched in Fig. 1.9. Consider the outer part of the slice Sout . This part is in a region
which is close to flat Minkowski spacetime. We had discussed above that particles
were well defined in such a region of spacetime, and this definition required us to
use positive frequency modes based on the usual coordinates on Minkowski space.
So we just use the standard definition of null coordinates here:
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X+ = t + r, X− = t − r, (1.41)

and the positive frequency modes are of the form

ψout ∼ eiKX−
, (1.42)

with K > 0. Since we evolve our field modes by keeping the phase of the mode
constant on the outgoing null rays, all we need to know now is the relation between
the outgoing null coordinates on Sout and the outgoing null coordinates on the initial
slice:

X− = X−(y−) . (1.43)

Note that X+ is not involved in this relation, so modes that start off as functions of
only y− become modes involving only X−.

What we need to know now is the nature of the function in (1.43). This requires
us to study the black hole metric and its geodesics. We will not carry out those
computations here, but instead just quote the results and focus on the qualitative
physics which emerges. Detailed derivations of the results we will use can be found
in [2, 9, 10]. A good review in the 2D context can be found in [11].

First consider points very close to the horizon. Let y− = 0 be the horizon itself.
Then points y− < 0 will be outside the horizon, and points y− > 0 will be inside the
horizon.

First consider null rays that are close to and just outside the horizon. It turns out
that the null coordinate X− describing the rays at infinity is related to the label used
near the horizon by a relation which is logarithmic:

X− ∼ − ln(−y−) . (1.44)

Note that y− < 0 for these rays, so we are taking the log of a positive number, as
we should. Since |y−| is very small, the log is negative, so X− is actually positive.
But as it stands this relation does not have the right units. The coordinate y− has units
of length, so we must first make a dimensionless variable and then take the log. The
only natural length scale in the black hole geometry is GM, and the relation actually
looks like

X− = −(GM) ln

(
− y−

GM

)
. (1.45)

This is a very interesting relation. A simple Fourier mode eiky− will get distorted
by the logarithmic map. But to completely understand this logarithmic map we also
need to understand what happens when the rays are not very close to the horizon.
Thus look at y− � −GM. For such values of y− we are no longer close to the hori-
zon. The rays are thus almost like rays in flat spacetime, and so there is no serious
deformation of the wavemodes. Thus the relation (1.45) will change over to a rela-
tion like

X− = −y−, for y− � −GM , (1.46)
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and there will be no distortion of modes in this region which is away from the
horizon.

Now let us look at the range y− > 0, i.e., the part of the mode inside the horizon.
There are no natural coordinates to describe the inside of the black hole. But since
we have chosen a way of drawing spacelike slices across the entire geometry, we can
use wavemodes here that are natural to this slicing; the actual choice of wavemodes
inside the horizon will not matter at the end. Thus consider the part of the slice Sin

inside the horizon. We can introduce a coordinate Y on this part of the slice which is
linear in the distance measured along the slice. The null rays for y− > 0 will intersect
this slice at various points. We assign to each ray a null coordinate Y− which is equal
to Y at the point where the null ray intersects Sin. Thus this coordinate assignment
is similar to the coordinate X− defined on Sout , with the difference that in the case
of Sout there was a natural physical choice and particles defined using X− had the
correct energy–momentum tensor to be the real particles at infinity.

With such a coordinate choice Y−, using the black hole geometry we find a rela-
tion like

Y− ∼ − lny− (1.47)

or with the correct dimensionful parameters inserted

Y− = −GM ln

(
y−

GM

)
. (1.48)

Thus there will be a distortion of the wavemodes on this side of the horizon as well.
The last point to note is that if |y−| is very small (i.e., the null ray is very close

to the horizon) then the ray intersects the late time slice on the ‘connector region’
Scon, rather than on Sout or Sin.

We now come to a crucial point. The wavemode on the initial slice straddles both
sides of the horizon. Indeed, the horizon is not a ‘special place’ in the geometry from
a local point of view; this can be seen from the circle drawn in Fig. 1.8(a), which
circles a region of spacetime much like any other. Thus wavemodes near the horizon
naturally continue from one side of the horizon to the other. But the subsequent
expansion of the geometry, encoded in the behavior of the null geodesics, treats the
parts of the wavemode outside and inside the horizon quite differently. The part of
the initial wavemode for y− �−GM does not ‘stretch’, the part for y− negative and
small in magnitude (but not too small) reaches Sout with a logarithmic stretching, the
part for very small |y−| ends up on the connector region Scon, and the part for y− > 0
(but not too small) ends up on Sin. The consequent distortion of the wavemode is
sketched in Fig. 1.9.

From this figure we can observe some basic facts about the distortion of the
wavemode. The distortion is large around the point where the rays move from being
inside the horizon to being outside the horizon. As we will see in more detail below,
there is very little distortion away from this region. Because the wavemode gets dis-
torted, a given Fourier mode on the initial slice becomes a combination of modes on
the later slice. Note that all modes involved are outgoing modes; we have functions
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of y−,X−,Y−. This fact is a consequence of our ‘ray approximation’ where we
evolve the mode by letting the phase of φ be constant on outgoing rays.

The most important thing here is that the part of the mode straddling the horizon
splits into a part on Sout and a part on Sin. This will make the state of the created
particles a ‘mixed state’ of the outside and inside quanta, as we shall discuss in more
detail below.

1.5.2 Detailed Nature of the Wavemode

Consider the part of the wavemode that escapes to r → ∞. In Fig. 1.10 we have
drawn, on the r− τ plane, the lines of constant phase for this part of the wavemode.
We have drawn a timelike surface (r = constant) on which we ‘catch’ the mode
outside the hole; it will be easier to understand the mode on this surface first and
then read off its behavior on any spacelike surface near infinity.

Our goal is to see where the distortion is large enough to create particles. On the
initial slice near the horizon, we take a Fourier mode eiky− . Consider this mode for
the range −GM < y− < 0. Recall that y− is negative outside the horizon and zero
on the horizon. Also, for y− � −GM, there is no significant distortion of null rays,

Fig. 1.10 The Fourier mode on the initial spacelike slice is evolved in the eikonal approximation
and ‘caught’ on the timelike surface r = constant near infinity. (From the behavior of the mode on
this surface we can immediately obtain what it looks like on any spacelike surface near infinity.)
The wavelength of oscillations becomes longer and longer as we go up the surface, with the last
oscillation to emerge from the horizon extending all the way to t = ∞



26 S.D. Mathur

so that we get y− ≈ X−. What we now wish to show is that even though there is a
logarithmic distortion of coordinates for smaller −GM � y− < 0, there is no particle
production for most of this range of y−; in fact particle production will be relevant
only for the few oscillations of the wavemode near y− = 0.

Thus we now look at the range −GM < y− < 0, where we assume that the loga-
rithmic maps (1.45) are a good approximation. Consider the Fourier mode eiky− on
the initial slice. Let the wavelength of this mode be much smaller than GM:

λ =
2π
k

= εGM, ε � 1 . (1.49)

Thus the number of oscillations of the wavemode in our range −GM < y− < 0 is
large:

# oscillations =
1
ε
� 1 . (1.50)

After the mode evolves to the late time slice we have to look at the wavelength in
the X− coordinate system. Consider one oscillation of the wavemode, which in the
y− coordinate system extends over the range

−α < y− < −α+ ε (1.51)

(here α > 0). The wavelength in the X− frame will be

λ1 = |δX−| = |
(

dX−

dy−

)
δy−| = GM

α
ε =

GM
α

ε . (1.52)

Now comes an important question: what about the next oscillation of the wave-
mode? On the initial slice this spans the range

−α− ε < y− < −α , (1.53)

where we have chosen to look at the oscillation that is the neighboring one on the
side closer to the horizon. This evolves to have a wavelength

λ2 =
GM
|y−|ε =

GM
α− ε

ε . (1.54)

How different is (1.54) from (1.52)? Let us first suppose that we are not looking at
the first few oscillations of the wavemode near the horizon. Then we have |y−|>> ε,
and

λ2

λ1
≈ α
α− ε

≈ 1 . (1.55)

This is the important fact: we can take several adjacent oscillations of the wave-
mode on the initial slice and find they evolve to almost the same final wavelength.
Thus the stretching they suffer can be called an almost uniform rescaling of coordi-
nates. But under a uniform rescaling we do not create particles, a fact that we can
see as follows. Suppose an initial mode eiky− evolves to eik(μy−), with μ a (positive)
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constant. To check for particle creation we would compute ( f ,g) where f = eiky−

is the positive frequency mode defining the initial vacuum and g = (eikμy−)∗ is the
negative frequency mode for the final vacuum. But

( f ,g) = −i
∫

dy−eiky−eikμy− → 0 (1.56)

since both Fourier modes involved in the integral have the same sign of the exponent.
(We get a nonzero integral only if we have eiky and e−iky in the integrand.)

So what we seem to be finding is that the part of the wavemode that is not too
close to the horizon undergoes deformations due to the logarithmic stretching, but
this does not create particles because under this stretching there is no significant
mixing of positive and negative frequency modes. The underlying reason for why
we failed to create particles is the same as the analysis of scales that we did in
the toy model with harmonic oscillators. In the latter case there was no particle
creation if the change of the potential was too slow compared to the time period of
the oscillator. In the present case, there is very little change in the stretching factor
over the period of oscillation of the wave, and so we again get no significant particle
creation.

To make the above conclusion more precise we recall the notion of wavepackets.

1.5.3 Wavepackets

In Fig. 1.11(a) we depict a wavemode with a definite wavenumber k0. This wave-
mode has an infinite spatial extent. For physical arguments it is more convenient to
have a wavemode that is localized in some region of space. Such a wavemode can be
obtained by appropriately superposing wavemodes of different k. But we also wish
to retain some properties of the mode arising from the fact that the wavenumber was
k0. Thus we use only a small band of k around the value k0:

k0 −Δk < k < k0 +Δk,
Δk
|k0|

<< 1 . (1.57)

This makes a wavetrain that ‘sort of’ has the wavenumber k0 but which de-
cays after a certain number of oscillations and is thus localized. Our discussions
are mostly qualitative, so we will allow ourselves to use wavetrains that are only a

Fig. 1.11 (a) A Fourier mode with given wavelength λ = 2π
k0

. (b) Appropriately superposing
fourier modes with wavenumbers near k0 we can make a wavepacket
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Fig. 1.12 If we look at the oscillations that are not too close to the horizon, then we can make a
wavepacket out of them that evolves to a wavepacket at infinity. Suppose we can make a localized
wavepacket such that in the region occupied by the wavepacket the ‘stretching’ of space is approx-
imately uniform. Then there will be no mixing of positive and negative frequencies and therefore
no particle production

few oscillations long; this means that we will not take Δk
k0

to be very small, but for
our pictorial understanding it will be enough to have k in the rough neighborhood
of k0.

Let us now use the above discussion together to make the point that we are after.
In Fig. 1.12 we make a wavepacket out of a few oscillations that are not too close to
the horizon. This wavepacket evolves to a wavepacket near spatial infinity without
significant distortion, since the oscillations making the wavepacket suffer an almost
uniform stretching under the evolution. Thus there is no significant particle produc-
tion from the part of the wavemode where |y−| � ε.

1.5.4 Modes Straddling the Horizon

So far we have seen what part of the wavemode does not create particles. The part
at y− � −GM does not get deformed. The part −GM � y− � −ε deforms loga-
rithmically but can be broken up into wavepackets, each of which suffers ‘nearly
uniform stretching’, so again we do not get particle creation. A similar analysis can
be performed for the domain y− > 0 which is inside the horizon. We can now turn
to the part of the wavemode that does create particle pairs.

Consider the wavemode on the initial surface and look at the domain of y− which
covers a few oscillations on either side of the horizon y− = 0. Thus we have

|y−| ∼ ε . (1.58)
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Fig. 1.13 A Fourier mode on the initial spacelike surface is evolved to later spacelike surfaces. In
the initial part of the evolution the wavelength increases but there is no significant distortion of the
general shape of the mode. At this stage the initial vacuum state is still a vacuum state. Further
evolution leads to a distorted waveform, which results in particle creation

With just a few oscillations in this range, we cannot break this part of the wave-
mode further into wavepackets. Thus we must evolve it as a whole to the late time
surface and see what it becomes. The evolution is described in Fig. 1.13. On the
initial slice we have regularly spaced oscillations. If we look at surface just a little
later, they are still pretty much like regularly spaced oscillations, since there has not
been much deformation; thus so far there is no significant particle production. On
slices that are much later, we see that the mode has deformed significantly: there are
a few oscillations on the part S− of the surface that is inside the horizon, then a large
gap until we reach a region on S+, where we find oscillations again.

Note that on this late time slice the deformation of these oscillations of the wave-
mode is very nonuniform. We have a positive frequency mode on the initial surface
eiky− , but on the late time surface we will get an admixture of positive frequency
modes eiKX−

and negative frequency modes e−iKX−
. The same happens for the part

of the mode on S−. Thus there will be particle creation.
The most important part of our entire discussion comes now. We know from

(1.28) that when we create particles by deforming spacetime the vacuum state

changes to a state of the form e−
1
2 ∑i j γi j b̂

†
i b̂†

j |0〉. But in the present case we can break
the creation operators b̂†

k into two sets: those on S+ which we call b̂†
k and those on

S− which we call ĉ†
k . When we compute the state on the late time surface it turns out

to have the form
e∑k γ b̂†

k ĉ†
k |0〉 . (1.59)
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We do not derive this result here; the derivation can be found, for example, in [2,
3, 9–11]. But this is the crucial result for the physics of information, so we will now
spend some time in understanding it.

1.5.5 The Nature of the Created Pairs

Consider again Fig. 1.13. On the initial surface the wavemode had a very short
wavelength. On later time surfaces the wavelength has been stretched to a longer
one, though there is no particle production because the stretching is almost uniform
over the oscillations under consideration. The wavelength keeps getting longer as
we go to later time slices, till the deformation becomes nonuniform and particles
are created. But there is only one length scale in the geometry – the scale GM
– and one can see easily that when particles are produced the wavelength of the
mode has become ∼ GM. At this point the wavemode has also moved to distances
� GM from the horizon, and further deformation stops. Thus the wavelength of the
produced quanta is ∼ GM. These are the Hawking radiation quanta, so we see that
this radiation has a temperature ∼ λ−1 ∼ 1

GM . The exact temperature is [2, 3]

T =
1

8πGM
. (1.60)

So the wavemode ends its evolution with a wavelength ∼ GM, but what was its
wavelength on the initial slice that we had drawn? On this initial slice there are
modes of all possible wavelengths. Consider a wavemode with wavelength shorter
than the one shown in Fig. 1.13. Then this mode will evolve for a longer time before
it suffers a nonlinear deformation.

This situation in depicted in Fig. 1.14. On the initial slice we have drawn two
wavemodes of different wavelengths. The one with the longer wavelength becomes
distorted first and creates the quanta labeled b1 and c1 on the late time slice. The
wavemode with shorter wavelength evolves for a longer time before becoming dis-
torted and creates the quanta labeled b2,c2.

The state of the first pair b1,c1 is of the form

|ψ〉1 = Ceγ b̂†
1 ĉ†

1 |0〉 . (1.61)

Here b̂†
1 is an operator that creates a quantum in the localized wavepacket de-

picted as b1 in Fig. 1.14, and similarly ĉ†
1 creates the quantum of the wavepacket

labeled c1. Because we have broken up wavemodes into localized wavepackets, we
can define a sort of local vacuum |0〉b1 in the region occupied by this mode b1. If
we are in this vacuum state then there are no quanta in this region, if we act with b̂†

1

once then we have one quantum with this wavepacket, if we act with b̂†
1b̂†

1 then we
have two quanta of this type, and so on. Doing the same for the modes on S− we
can write the state (1.61) as
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Fig. 1.14 On the initial spacelike slice we have depicted two Fourier modes: the longer wavelength
mode is drawn with a solid line and the shorter wavelength mode is drawn with a dotted line. The
mode with longer wavelength distorts to a nonuniform shape first and creates an entangled pair
b1,c1. The mode with shorter wavelength evolves for some more time before suffering the same
distortion, and then it creates an entangled pair b2,c2

|ψ〉1 = Ceγ b̂†
1 ĉ†

1 |0〉b1 |0〉c1 . (1.62)

A similar state is produced by the wavemode which started off with a shorter
wavelength on the initial slice. We get particle pairs described by

|ψ〉2 = Ceγ b̂†
2 ĉ†

2 |0〉b2 |0〉c2 . (1.63)

The pairs bk,ck for different k lie in regions that do not overlap, so the overall
state on the late time slice is the direct product of the states |ψ〉k:

|ψ〉 = |ψ〉1 ⊗|ψ〉2 ⊗|ψ〉3 ⊗·· · . (1.64)

We have presented a simplified discussion of the created pairs; more technical
details can be found in [2, 3, 9–11]. For a more accurate description we should use a
large number of oscillations in making each wavepacket (we have used just a few),
and then we will have to consider many wavenumbers in each of the intervals on S±
over which the wavepackets extend. But the above approximate description has all
the essence of what we need to understand the entanglement of quanta.



32 S.D. Mathur

1.5.6 The Entangled Nature of |ψ〉

Consider the state |ψ〉1

|ψ〉1 = C

(
|0〉b1 ⊗|0〉c1 + γ b̂†

1|0〉b1 ⊗ ĉ†
1|0〉c1 +

γ2

2
b̂†

1b̂†
1|0〉b1 ⊗ ĉ†

1ĉ†
1|0〉c1 + · · ·

)

= C
(
|0〉b1 ⊗|0〉c1 + γ|1〉b1 ⊗|1〉c1 + γ2|2〉b1 ⊗|2〉c1 + · · ·

)
, (1.65)

where |n〉b1 means that we have n quanta of type b1 in the state, etc.
The important feature of this state is that the b1 and c1 excitations are ‘entangled’.

To understand this in more detail, let us take a simple example of an entangled
state.

1.5.7 Entanglement and the Idea of ‘Mixed States’

Consider two electrons, kept at two different locations, and let each of them have a
‘spin-up’ state and a ‘spin-down’ state. Then this system can have ‘factored states’
of the form

|ψ〉 = |ψ〉1 ⊗|ψ〉2 . (1.66)

Examples are

|ψ〉 = | ↑〉1 ⊗| ↓〉2

|ψ〉 =
1√
2
(| ↑〉1 + | ↓〉1)⊗

1√
2
(| ↑〉2 + | ↓〉2) , (1.67)

etc. But we can also have “entangled” states which cannot be written as a product
of the type (1.66), for example

|ψ〉 =
1√
2

(| ↑〉1 ⊗| ↓〉2 + | ↓〉1 ⊗| ↑〉2) . (1.68)

Suppose we ask, what is the state of electron 1? For states of type (1.66) we can
answer this question: we ignore the state of electron 2 and just give the answer |ψ〉1.
But for states of type (1.68) we cannot do this, and only the state of the entire system
makes sense. Suppose we nevertheless want to ignore electron 2 in some way. Then
we can make a ‘density matrix’

ρ = |ψ〉〈ψ| . (1.69)

For the two-electron system we get
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ρ =
1
2

| ↑〉1 ⊗| ↓〉2 1〈↑ |⊗ 2〈↓ |

+
1
2

| ↑〉1 ⊗| ↓〉2 1〈↓ |⊗ 2〈↑ |

+
1
2

| ↓〉1 ⊗| ↑〉2 1〈↑ |⊗ 2〈↓ |

+
1
2

| ↓〉1 ⊗| ↑〉2 1〈↓ |⊗ 2〈↑ | . (1.70)

We can now ‘trace over’ the states of system 2, which for the above case means
that the bra and ket states of system 2 must be the same in the terms that we keep.
Then we get a ‘reduced density matrix’ describing system 1:

ρ1 =
1
2
| ↑〉1 1〈↑ | +

1
2
| ↓〉1 1〈↓ | . (1.71)

In general we get a density matrix of the form ρ1 = ∑m,n Cmn |m〉1 1〈n|. The
probability to find system 1 in state k is given by the coefficient Ckk. These prob-
abilities must add up to unity, so we have trρ = 1. The entropy that results from
ignoring system 2 is given by

S = −tr ρ lnρ . (1.72)

For the density matrix (1.71) we can compute S easily since it is a diagonal
density matrix

S = −
[

1
2

ln
1
2

+
1
2

ln
1
2

]
= ln2 . (1.73)

If the state |ψ〉 in (1.69) is ‘factorized’ as in (1.66) then when we make ρ1 and
compute S we get S = 0. Roughly speaking, S gives the log of the number of terms
in a sum like (1.68). The entropy is thus a measure of how ‘entangled’ the systems
1 and 2 are.

1.5.8 Entropy of the Hawking Radiation

Let us now return to the black hole. The state (1.65) is not factorized between the
b1 and c1 excitations. The number γ is order unity, so the first few terms in the sum
will be of relevance. To explain the significance of the entangled nature of the state
we will for convenience replace the state (1.65) by the simpler state

|ψ〉1 =
1√
2

(
|0〉b1 ⊗|0〉c1 + |1〉b1 ⊗|1〉c1

)
. (1.74)

The quanta of type b1 lie on the part S+ of the spacelike surface which is outside
the horizon, while the quanta of type c1 lie on the part S− which is inside the horizon.
Due to the entanglement between b1 and c1 quanta, we cannot restrict ourselves to
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the Hawking radiation quanta b1 and still describe them by a ‘pure’ quantum state.
If we wish to ignore the quanta c1 then we have to find the density matrix for the
quanta b1. For the state (1.74) we will get an entanglement entropy S = ln2. (The
state (1.65) would have given an S of the same order.)

Now we can look at the other pairs of quanta (b2,c2),(b3,c3), etc. We had seen
that each of these sets (bk,ck) lives at a location different from the other pairs, so
the overall state (1.64) was a direct product of states for each of these pairs. A little
thought shows that the total entanglement entropy S will then be the sum of the
entropies from each pair (bk,ck). Let us see how many such pairs there will be. The
temperature of the Hawking radiation is (1.60), so the energy of the typical emitted
quantum is ∼ (GM)−1. The mass of the hole is M, so the number of quanta that will
be emitted when the hole has evaporated is

# quanta ∼ M(GM) ∼ (GM)2

G
. (1.75)

With an entropy of order unity from each set (bk,ck) we see that the entropy of the
radiation is

Srad ∼ (GM)2

G
∼ Sbek , (1.76)

so we see that the radiation has an ‘entanglement entropy’ of the order of the entropy
of the black hole.

1.5.9 The Problem with the Entangled State

Consider the two-electron state (1.68), and suppose that we want to concentrate on
the first electron. We have seen that we cannot write a quantum state for this electron
alone. We can make a density matrix ρ1, but this is not a ‘pure’ quantum state. Rather
it is a statistical construct that allows us to get probabilities for different states of
electron 1, and one cannot see the usual quantum principles of linear superposition
or phase interference by looking at ρ1.

Of course there is no fundamental problem with such an entangled state; all we
have to do is realize that it is only the complete two-electron system that can be
described by a quantum state. The situation is a bit different for the black hole case.
As long as we are willing to look at both sets of quanta, bk and ck, we have an
entangled quantum wavefunction. But if the black hole eventually disappears, then
we will be left with the quanta of type bk floating at infinity. We know that they
cannot be described by a pure quantum state, and now we cannot write a mixed
state either, for there is nothing for them to mix with! Thus the only way we can
describe the bk quanta is by the reduced density matrix ρb describing the bk, and
this description is inherently statistical, rather than a usual quantum mechanical one.
This is what led Hawking to postulate that quantum mechanics in the presence of
gravity is not a consistent theory by itself; he suggested that general configurations
can only be described by density matrices, and we must make a quantum theory
based on such a description.
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Attempts to modify quantum theory in this way have not made much progress.
Others have argued that the black hole does not completely evaporate away, but
instead stabilizes after reaching planck size because of quantum gravity effects. In
this case the quanta ck are never removed from the system, and we have a pure state
overall. But one is then forced to accept that there can be an infinite number of
possible states of such a planck-sized remnant (since the remnant can result from
an arbitrarily large black hole). Allowing the theory to have infinitely many states
within a bounded spatial region and within a bounded energy range is unnatural, and
creates many problems for the theory. It would therefore seem best if somehow we
could get the black hole to disappear and yet have the quanta bk left in a pure state.
Let us now discuss what would be needed for this to be possible.

1.6 Common Misconceptions About Information Loss

We will find it helpful to start by considering several common misconceptions about
how information can come out of the black hole.

1.6.1 Is the Emitted Radiation Exactly Thermal?

A common argument about Hawking radiation is the following. The above discussed
computations give ‘thermal radiation’, but there could be corrections (from the grav-
itational backreaction of the created pairs, for example) which generate small devia-
tions from ‘thermality’, and these deviations can encode the information that should
escape from the hole.

The problem here is the word ‘thermal’. What is thermal radiation? One might
think that ‘thermal’ means the spectrum of radiation should be planckian; this spec-
trum is depicted by the solid curve in Fig. 1.15. Small deviations from this spectrum
are shown by the dotted curve in Fig. 1.15. Can such a change in spectrum bring out
information from the black hole? We will now see that the shape of the spectrum
itself does not have much to do with whether the information comes out.

Fig. 1.15 The planck
distribution; small deviations
from this distributions are
indicated by the dotted curve
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For one thing, the spectrum of the semiclassical radiation from the black hole
is not of the planck shape; the spectrum is modified by graybody factors. This is
a general feature of radiation from any warm body – there is a modification to the
spectrum if the emitted wavelength is comparable to the size of the body. For black
holes, this wavelength is ∼ GM, which is the same order as the black hole size
r ∼ 2GM. Thus the spectrum is not planckian anyway.

A more correct definition of ‘thermal’ radiation is that if the body has an absorp-
tion cross section σ(k) for quanta of a certain wavenumber, then the emission rate
for the same wavenumber is

Γ = σ(k)
d3k

(2π)3

1

e
ω
T −1

. (1.77)

The semiclassical radiation from the hole is ‘thermal’ in this sense. But the es-
sential problem that we have is not created by this ‘thermality’, but by the entangled
nature of the state. Whether we have the entangled state (1.65) (which can be shown
to be ‘thermal’ in the above sense) or the entangled state (1.74), which is very dif-
ferent from ‘thermal’, we face the same problem. There is order unity entropy of
entanglement from the state created by each pair of operators (b̂†

k , ĉ
†
k), and so there

is an entanglement entropy (1.76) for the radiation which is order Sbek. It is this en-
tanglement that will eventually lead to information loss. By contrast, if a piece of
coal burns away completely to radiation, then this radiation is in a pure state, even
though it looks much more ‘thermal’ than a state which has the form (1.74) for each
of the (b̂†

k , ĉ
†
k).

Thus ‘thermality’ is not really the issue; the issue is the entangled nature of the
state created in the process of black hole evaporation.

1.6.2 Can Small Quantum Gravity Effects Encode Information
in the Radiation?

Consider the derivation of Hawking radiation discussed in the above sections. We
have used a classical metric and a quantum field φ on this ‘curved space’, but gravity
itself has not been treated as quantized; this is called the semiclassical approxima-
tion. Thus the semiclassical computation of radiation does not use the physics of
quantum gravity anywhere. Since spacetime curvature was low in the regions where
the wavemodes deformed and created particles, this would seem to be a good ap-
proximation. But one can still wonder if the small corrections that would arise from
quantum gravity effects could change the state of the radiation to a pure state. There
are two aspects to this question:

(a) The first point to note is that a small change in the state of the quantum field
will not succeed in making the state of the b quanta a pure state. Focusing again
on a given set (b1,c1) we see that their state is a mixed one like (1.65). To get no
entanglement of the b1 quanta with the c1 quanta we would need a state like
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|ψ〉1 =
(
C0|0〉b1 +C1|1〉b1 + · · ·

)
⊗ (D0|0〉c1 +D1|1〉c1 + · · ·) . (1.78)

But the state (1.78) is not a small perturbation on a state like (1.65). The two
states are completely different, so we need an order unity change in the state of each
set (bk,ck) before the state can become pure. Thus if quantum gravity is to help us,
then it must completely change the evolution of the wavemodes that we have been
drawing in the above sections.

(b) The second point is that even if we had a state like (1.78), and thus the radia-
tion quanta bk formed a pure state by themselves, it would not solve the information
problem. Consider the Penrose diagram in Fig. 1.16(a). There are not two but three
kinds of matter involved in the problem. There is the matter that fell in to make the
hole, marked Q. Then there are the Hawking radiation quanta bk (we have labeled
them B) and their entangled partners, the ck (labeled C in the figure).

The problem is that not only do the quanta B have to form a pure state, but they
have to carry the information of the matter Q. This is because in quantum mechanics
the evolution of states is one to one and onto, and so different states of the initial
matter Q have to give different states of the final radiation B. In Fig. 1.16(b) we have
drawn the slices as shown in Fig. 1.5, with Q,B,C indicated. We see that the quanta
Q reach small r first, and exist on each slice. The way we have drawn our slices keeps
Q always in a region of low curvature; to achieve this we have evolved the small r
region very little as we move from slice to slice. As the evolution proceeds the bk

and ck quanta start appearing out of the vacuum modes. But these vacuum modes
were localized in the region between the b and c quanta, far away from where Q sits
on the slice. So how can the matter Q transfer its information to the bk? This is the
essence of the information problem.

Note that all the evolution depicted in Fig. 1.16(b) has been in a low-curvature
region, with slices that are smooth and carrying matter that is always of low density.
Thus it would appear that the situation is like the low-curvature physics encountered
in the solar system, and no unexpected quantum effects can occur. The only unusual
thing is that through the course of the evolution the slices stretch by a large amount,
as discussed in Sect. 1.4. In conventional relativity the total stretching from initial
to final slice does not matter; quantum gravity effects will not come in as long as the
rate of change is small. This fact may not be true in string theory; for a discussion
see [12, 13].

1.6.3 What Is the Difference Between Hawking Radiation
and Radiation from a Burning Piece of Coal?

Suppose a piece of coal burns away completely, leaving behind only the radiation
it emitted. This time we know that subtle correlations in the emitted quanta encode
the entire information about the state of the coal. But because these correlations are
subtle, we cannot see them easily. How does this radiation differ from the Hawking
radiation emitted by the black hole?

Consider the first photon emitted by the coal. This photon can be in a mixed
state with the matter left behind in the coal. Let us assume that an atom emits this
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Fig. 1.16 (a) The infalling matter Q and the entangled pairs C,B shown on the spacelike slices in
the Penrose diagram. (b) Q,C,B sit at different locations on the spacelike slices. To catch all three
of these on the slices while staying in a low-curvature region we have evolved the small r side less
and the large r side more, something that we are certainly allowed to do in classical gravity

photon and that after the emission the spin of the atom and the spin of the photon
are correlated in an entangled wavefunction as follows

|ψ〉1 =
1√
2

(| ↑〉a ⊗| ↓〉p + | ↓〉a ⊗| ↑〉p) , (1.79)

where | ↑〉a stands for the spin-up state of the atom, | ↓〉p stands for the spin-down
state of the emitted photon, etc. Thus far, the situation looks just like the case of
entangled b,c in the black hole. But the crucial difference is that when later photons
are emitted from the coal, they can bounce off the atom left behind in the coal,
and thus the spins of these later photons can carry the information left behind in
this atom. If this atom drifts out itself (as a piece of ash) then it can also carry the
information of its spin. Thus at the end the quanta collecting at infinity are entangled
only with themselves and form a pure state carrying all the information in the initial
piece of coal.

Contrast this with the state of the radiated quanta bk in the black hole case, shown
in Fig. 1.14. The quanta of type b1 are correlated with the quanta of type c1, which
are located at a certain region on the part S− of the spacelike slice. But this place
where c1 is located is not involved any further in the process of radiation from the
black hole. For example, consider a later pair, say (b10,c10), and look at the region
where this mode is suffering its nonuniform deformation. This region is not causally
connected to the location where the earlier quanta c1 is located, so c1 cannot have
any influence on the later-emitted quantum b10. In the case of the coal the atom left
behind after the first emission was in causal contact with later quanta leaving the
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coal. The black hole is different because each pair (bk,ck) is created at a point on a
spacelike surface, and then this surface stretches so that the bk,ck quanta are moved
away in different directions. New quanta are again created in the middle (i.e., at the
horizon); these are again moved away by stretching, and so on. Thus all the created
quanta bk,ck are located along different points of a very long spatial slice, with no
overlap in their locations.

Since the quanta are prevented from influencing each other by being spread out
along this very long spatial slice, we should ask the basic question: how did we get
this very long spatial slice when the black hole only had a given size ∼ GM? Recall
from Fig. 1.4 that the spacelike slice inside the horizon was of the form r = constant,
and it could be made arbitrarily long while remaining in the region r < 2GM. This
possibility is unique to the black hole geometry, since it needs the light cones to
‘turn over’ and make the r = constant direction spacelike. This does not happen for
the coal, and so later quanta can (and do) carry the information left in entangled
pairs from earlier quanta.

1.7 The Hawking ‘Theorem’

There is one more common misconception about Hawking’s computation of ra-
diation which is very important to address. Look at the evolving mode drawn in
Fig. 1.13. On the late time surface this mode was deformed, but if we follow the
mode to the far past then it is just a simple Fourier mode with no particles in that
mode; i.e., âk|0〉 = 0. The further back we look, the smaller the wavelength. In
fact if we follow the mode to times before the black hole formed then we find that
its wavelength was much shorter than planck length; such modes are called ‘trans-
planckian’. But perhaps we do not really know how to do quantum field theory when
transplanckian wavelengths are concerned. In normal physics we take a field, break
it into Fourier modes, make operators âk, â

†
k , and define a vacuum annihilated by the

âk. Maybe all this is incorrect when describing transplanckian modes, and quantum
gravity must be brought in some essential way?

If this argument were correct, then we have no information paradox, since Hawk-
ing’s semiclassical computation would be invalid. In this section we argue that
we do not need to know the physics of transplanckian modes to make Hawking’s
claim; we can formulate his argument using only physics at scales that we under-
stand. More precisely, we will formulate his argument in the form of the following
‘theorem’:

Suppose we are given that

(a) The effects of quantum gravity are confined to within a fixed length like planck
lp or string length ls.

(b) The vacuum is unique. Then when a black hole forms and evaporates, we will
have information loss.
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The meaning of these conditions will become clearer as we go through the
argument.

1.7.1 The Local Vacuum

Let us first chose a length scale where we believe that we do understand quantum
field theory and its vacuum structure. This could be λ ∼ 1 fermi, since experiments
on nuclear scales agree well with computations of Feynman graphs in field theory.
Or we could take λ ∼ 1 Å, since we understand atomic physics well, including the
effects of vacuum fluctuations in effects like the Lamb shift. It does not matter what
scale we choose; we will just keep it fixed henceforth as a scale λ ∼ λknown. The
black hole itself will be taken as big, so we have

lp � λknown � GM . (1.80)

A given Fourier mode starts off with very small wavelength λ � lp, evolves to
longer wavelengths λ ∼ λknown, and then continues to evolve to λ ∼ GM, where its
distortion becomes nonuniform and particle pairs are created. The important point is
that since λknown � GM, no particle pairs have been created when λ ∼ λknown. Thus
we will look at the physics at this intermediate scale λknown which is much larger
than planck length and where the wavemode is still in the vacuum state.

1.7.2 The Consequences of Conditions (a) and (b)

Look at the region circled in Fig. 1.8(a). If we assume condition (a) of our ‘theorem’,
then since the circled region is far from the singularity we have ‘normal’ physics’
in this region, with no quantum gravity effects. That is, the metric is that of empty,
almost flat, spacetime. Now focus on a mode which in this region has λ ∼ λknown. By
condition (b) of the ‘theorem’ the vacuum is unique, which means that there is only
‘one kind of empty space’ possible in the theory; this empty space must therefore
be described by the usual quantum vacuum that we use in field theory. Since there
is nothing strange about the state of the spacetime region under consideration, the
Fourier mode that we are studying (with λ ∼ λknown) will have to behave the way
we expect a mode to behave in usual field theory.

Since we have ‘normal physics’ for this mode, the possible states of this mode are
the vacuum |0〉, 1-particle |1〉, 2-particle |2〉, etc. There are now two possibilities:

(i) First assume that the state of the field mode is the vacuum |0〉. Then the state
will evolve in the way shown in Fig. 1.13. So the mode will become distorted
and create entangled particle pairs described by a state like (1.65), and we
would have the information problem created by such an entangled state.
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(ii) What happens if we assume that the state of the mode λ was not the vacuum
state in this circled region? It is in principle possible that we get such an
excited state for the mode because as we have argued above, we do not really
know the evolution of the mode at the time when it was transplanckian. So
suppose the mode is in a 1-particle state |1〉 when it reaches λ ∼ λknown. Then
because for this mode we have ‘normal physics’, we will have the energy
density expected from quanta of λ ∼ λknown ∼ 1 fermi in the circled region
of Fig. 1.8. So there would be matter of nuclear density filling this region.
This would not agree with this region being low-curvature ‘empty space’, as
required by postulate (a). More generally, the state of the wavemode λ ∼
λknown can be

|ψ〉 = C1|0〉+C1|1〉+C2|〉+ · · · . (1.81)

If Ci, i > 0 are not small, then we get the nuclear density matter distribution
around the horizon. (It does not help to ask that the Ci be small but nonzero,
since then the evolved state will be close to (1.65), and we have already seen
that we need an order unity change in this state to remove the entanglement.)

1.7.3 The Consequence of a Non-unique Vacuum

It may appear that there is one way that we can have the classical geometry of the
hole depicted in the circled region of Fig. 1.8(a) and yet avoid information loss. This
way would be to drop condition (b) from our set of natural physics assumptions. Let
us see what dropping this condition would imply.

Consider again the state of the quantum field in the circled region of Fig. 1.8(a).
Suppose that the state here is not the usual vacuum, and yet it has no energy density.
This sounds strange, and indeed there are no such states in usual field theory. But
it could be that the transplanckian modes, which we do not understand, have some
complicated states which are not the usual vacuum and yet have no extra energy over
that of the vacuum. Then the evolution of modes with λ ∼ λknown can be different
from the normally expected evolution because of interaction with these ‘hidden’
transplanckian excitations. The allowed states for modes λ ∼ λknown may not be of
the form (1.81), and the evolution of these modes may not be the usual free wave
evolution depicted pictorially in Fig. 1.13.

But if such a situation were permitted in our full quantum gravity theory, then we
would have to say that the vacuum of the theory is non-unique. There would be an
arbitrarily large number of states possible in a given region, with energy arbitrarily
close to the vacuum. For each such state we would find a totally different evolution
for modes with λ ∼ λknown. In this situation the theory loses all predictive power. In
the lab we would not know which of these ‘vacuum’ states we have, so we would not
know how modes with λ ∼ λknown would behave. We could never do the physics at
any length scale, because modes with shorter length scales could be ‘corrupting the
vacuum’ and modifying evolution, without being detectable since they contribute
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no net energy. Thus we normally assume condition (b) of our theorem that the vac-
uum is unique. (For an example of a theory with a non-unique vacuum created by
nonlocal identifications, see [14].)

1.7.4 Summary of the Information Paradox

Thus we see that if we assume the two very reasonable sounding assumptions (a)
and (b) of the Hawking ‘theorem’, then we are forced into a situation where the
outgoing radiation will not be a pure state carrying the information of the black hole.
To evade the information paradox we will therefore need some radical change in our
basic understanding of quantum mechanics and gravity. Let us first summarize the
main ideas that have led to the information paradox.

The central point is that vacuum modes evolve over smooth spacetime in the
manner sketched in Fig. 1.13, and thus create entangled particle pairs. Entangled
states are not a problem by themselves. The problem arises because gravity is an
attractive force with a negative potential energy, and this makes the quanta ck inside
the horizon have a net negative energy. Thus the matter Q and the quanta C in Fig.
1.16 can have a net mass zero. Then all the energy will go to the bk quanta and
there is no net mass left in the hole. If we assume that there cannot be an infinite
number of light ‘remnants’ in our theory then we are forced to assume that the black
hole disappears. Now the radiation quanta bk are ‘entangled with nothing’, and we
cannot describe them by any wavefunction.

To save this situation we need some way to change significantly the evolution
depicted in Fig. 1.13. In fact what we need is not only that the matter labeled B in
Fig. 1.16 be in a pure state (so that it should not be entangled with C), but that it
should reflect all the information in the matter Q. In the derivation of the Hawking
‘theorem’ we saw that we could restrict attention to wavemodes with λ � λknown,
where the physics of evolution is well understood. The evolution of these modes,
depicted in Fig. 1.13, would seem to be governed by physics that we know very
well – the physics of quantum fields on gently curved space. Yet, to save quantum
theory we need that this evolution be changed by order unity, leading to a completely
different state than the entangled pair state that we got! A small change in the
evolution, leading to a small change in the final state, will not help.

We will see in the next section that in string theory it is condition (a) that fails;
quantum gravity effects can change the entire interior of the hole and resolve the
information paradox.

1.8 Black Holes in String Theory: Fuzzballs

String theory provides a consistent theory of perturbative quantum gravity, so we
can hope that the theory might also be able to avoid contradictions when it comes
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to nonperturbative things like black holes. The theory has no free parameters, and
no fields can be added or removed from the theory. To make the black hole we must
use the objects present in the theory. Let us compactify the 10D spacetime of string
theory as follows:

M9,1 → M4,1 ×T 4 ×S1 . (1.82)

We can wrap a string around the S1; this will look like a point mass from the
viewpoint of the noncompact directions. We can take a large number n1 of these
strings and ask what metric they produce. The important thing is that we take a
bound state of the strings, otherwise we will make ‘many small black holes’ rather
than the one massive hole that we are seeking. The bound state of these strings is
easy to picture: the string just wraps n1 times around S1 before closing. There is just
one such state of the string, since the string is an ‘elastic band’ and settles down to its
shortest length for the given winding. Thus the microscopic count of states would
suggest an entropy Smicro = ln1 = 0. What about the ‘black hole’ that it creates?
The string carries ‘winding charge’ and radiates a corresponding 2-form gauge field
Bμν . When we make the metric with the mass and charge of the string we find that
the horizon coincides with the singularity, and so the horizon area is zero. Thus the
Bekenstein entropy Sbek = A/4 = 0, and so we get Sbek = Smicro.

Alternatively we can take the massless gravitons of the theory and allow them to
circle around the S1; this would also look like a mass point from the viewpoint of the
noncompact directions, but now the mass point will carry ‘momentum charge’ due
the momentum carried by the gravitons. To get a ‘bound state’ of these gravitons we
would have to put all the momentum into one energetic graviton, so the microscopic
entropy would be again Smicro = ln1 = 0. The metric produced by this graviton
carrying energy and ‘momentum charge’ again ends up with no horizon area, and
we get Sbek = 0 = Smicro.

To get something more interesting let us combine the winding and momentum
charges. To make a bound state of winding and momentum we simply let the mo-
mentum be carried as traveling waves on the string. But now we see that there are
many states for a given winding n1 and a given momentum np: we can put all the en-
ergy in the lowest harmonic, or some in the first and some in the second harmonic,
or take any other distribution of the energy into harmonics. The number of such
states turns out to give an entropy [15–19]

T 4 : S = 2
√

2π√n1np ,

K3: S = 4π√n1np , (1.83)

where we have also included the answer for a case where the T 4 in (1.82) has been
replaced with another 4D manifold called K3.

We can compute the geometry produced by a point source carrying the energy
and gauge fields produced by the string winding and momentum. In this compu-
tation we should note that the string action contains R2 corrections to the leading
Einstein action R. This modifies the expression for the Bekenstein entropy (to the
‘Bekenstein–Wald entropy’ [20]). With these needed corrections this entropy has
been computed for the case of K3 compactification, and one finds that [21]
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Sbek = 4π√n1np = Smicro , (1.84)

so the microscopic count exactly reproduces the entropy from the geometry of the
horizon.

We can make more complicated holes, by adding n5 5-branes wrapped on T 4×S1

(or on K3× S1). This time the horizon area is large enough that we do not need
the R2 corrections to the action, and one finds an exact agreement again with the
microscopic count of states [22, 23]

Sbek =
A
4

= 2π√n1npn5 = Smicro . (1.85)

So we seem to understand something about black hole entropy, but what about
the information problem? To understand what can change in Hawking’s derivation
of information loss, we need to understand what is going on inside the black hole.
Let us return to the 2-charge hole made with string winding and momentum. The
crucial point is that the elementary string of string theory has no longitudinal waves;
it admits only transverse oscillations. Thus when carrying the momentum as trav-
eling waves it spreads over some transverse region, instead of just sitting at a point
in the noncompact space. Instead of the spherically symmetric hole with a central
singularity at r = 0 we get a ‘fuzzball’, with different states of the string creating
different fuzzballs. Interestingly, the boundary of the typical fuzzball has an area
that satisfies

A
G

∼√
n1np ∼ Smicro . (1.86)

So we see that the region occupied by the vibrating string is of order the en-
tire horizon interior; in fact a horizon never forms [24, 25]. We depict this situa-
tion in Fig. 1.17. Now there is no information problem: any matter falling onto the
fuzzball gets absorbed by the fuzz and is eventually re-radiated with all its infor-
mation, which is just how any other body would behave. The crucial point is that
we do not have a horizon whose vicinity is ‘empty space’. The matter making the
hole, instead of sitting at r = 0, spreads all the way to the horizon. So it can send its
information out with the radiation, just like a piece of coal would do.

Similar constructions have been done with many states of the 3-charge hole car-
rying winding, momentum, and 5-brane charges, and more complicated holes with
four kinds of charges [26–31]. Some states of non-extremal holes have been made as
well [32]. Radiation from these non-extremal gravity states has been computed [33]
and found to agree exactly with the radiation expected from the corresponding state
of strings and branes [34].

We can still ask, why does all this work? What feature of string theory led to
this large change in the picture of the hole and allowed the interior of the horizon to
depart from the naive classical expectation? The answer would seem to be ‘fraction-
ation’, a phenomenon peculiar to string theory which is a theory of extended objects.
Consider spacetime with a compact circle of length L. Suppose we want to make an
excitation of this system, while adding no net charge. What is the lowest energy
ΔE that we will need? We can take one graviton in the lowest allowed harmonic
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Fig. 1.17 (a) If the string winding and momentum excitations could sit at a point, then we would
get the usual black hole; in the lower diagram the geometry is shown with flat space at infinity, then
a ‘throat’, ending in a horizon with a singularity inside. (b) The string cannot carry the momentum
without transverse vibrations, and thus spreads over a horizon-sized transverse area. The geometry
depicted in the lower diagram has no horizon; instead the throat ends in a ‘fuzzball’

running clockwise on the S1, and one running; this would give an energy ΔE = 4π
L .

Now suppose on this circle we already had a wrapped string with winding n1. Now
we can excite a clockwise momentum mode of energy 2π

n1L on the string, and with a

similar contribution from the anticlockwise mode we get ΔE = 4π
n1L . If n1 � 1 then

this ΔE is much smaller than the energy gap in the absence of the strings. We say
that in the presence of the strings the momentum comes in fractional units, which
are 1

n1
th of a full unit [35].

This looks like a simple physical effect, so what can it have to do with black
holes? In string theory we have duality, which allows us to map different objects
in the theory to each other. Thus we can map the n1 times wound string to a
bound state of n1 5-branes. At the same time the momentum mode would map
to a string winding along the S1. Now the ‘fractional momentum mode’ becomes
a ‘fractional string’. But what is a fractional string? The original string had a ten-
sion of string scale, which is order planck scale. But the fractional string has a
tension which is 1

n1
th of this value, and so for n1 large it will be a very low tension

object [36].
One can extend such constructions further to bound states of many kinds of

branes. Let us take the black hole described in (1.85). One finds that there exist
very low tension ‘floppy fractional objects’ that stretch over distances of order [37]
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D ∼
[

(n1npn5)
1
2 g2α ′4

V L

] 1
3

, (1.87)

where V is the volume of T 4, L is the length of S1, and g and α ′ are the string
coupling and tension. But this turns out to be just the order of the horizon radius
of the black hole with these charges! This argument tells us that fractionation can
generate quantum effects over horizon scales. We can then return to simpler holes
like the 2-charge hole (1.83), where we can construct the internal state of the hole,
and see that we indeed get a ‘fuzzball’ instead of the traditional hole.

This solves the information paradox but raises many natural questions about the
behavior of black holes. While the dynamics of fuzzballs is in its infancy, we can
make some simple observations and conjectures relevant to such questions.

If a shell of dust is collapsing, will it suddenly change its dynamics when it
reaches horizon size?

No, the fuzzball proposal does not require that. The essential point is that there
are two timescales in the black hole problem. One is the ‘crossing timescale’ of or-
der ∼ GM, over which the collapse occurs. The other is the much longer Hawking
evaporation timescale, tevap ∼ GM( M

mplank
)2. The collapsing matter was in a low-

entropy state, and will take some time to come to statistical equilibrium and reach
a generic state (which we expect to be a fuzzball-type state). It is known that the
entropy of radiation from the hole Srad is somewhat larger than Sbek, since the radi-
ation free-streams out of the hole rather than leave in a ‘quasi-static’ way [38, 39].
Thus the matter can collapse as classically expected on the crossing timescale and
even use some fraction of tevap to stabilize to the fuzzball configuration; we can still
carry the information out in the remaining radiation.

After the black hole has stabilized to the fuzzball configuration, will an infalling
body feel a very different environment from that of the usual black hole geometry?

Not necessarily, since the ‘fuzz’ is a very low density ‘web’, at least in the simple
2-charge examples that we can explicitly study [40]. If a body is heavy (compared
to the energy of a Hawking radiation quantum) and we follow it only over the short
‘crossing’ timescale ∼ GM, then we may not see a dynamics that departs signifi-
cantly from the classical one. But over the long Hawking evaporation timescale the
information in the heavy body should get incorporated in the fuzz and eventually
get radiated away.

After the black hole has stabilized to the fuzzball configuration, will the evolution
of Hawking radiation quanta be very different from that expected in the classical
geometry?

Yes, and that should happen. If we do not modify the evolution of λ ∼ GM
Fourier modes in the vicinity of the horizon, we will have information loss, as argued
in the above sections. The fuzzball structure of the hole ensures that the information
of the hole reaches out to the boundary of the hole and so the mode evolution of
Fig. 1.13 is altered, not slightly, but rather by order unity effects. This is what is
needed to prevent information loss.
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1.9 Conclusion

So what is the information paradox? We would like ordinary quantum theory to be
valid, even when black holes form and evaporate. But with the traditional picture of
the black hole, the explicit computation of Hawking radiation generates entangled
pairs, and the state of the outgoing quanta is not a pure quantum state when the black
hole disappears. Furthermore, the state of these outgoing quanta bk has no relation
to the matter that made the hole; they just made a specific entangled state with their
partners ck. To resolve the paradox we have to find some way to change the evolution
of vacuum modes depicted in Fig. 1.13, so that the bk form a pure state containing
the information of the initial matter. Small changes in the evolution will not help; it
has to be an order unity change since we want a completely different outcome. But
if we make some very reasonable sounding assumptions – that quantum effects are
confined to within planck distances and that the vacuum is unique – then we can
establish that there cannot be any such change to the evolution of Fig. 1.13.

String theory resolves the problem by telling us that the first assumption is false:
quantum gravity effects are not confined to a given distance, but instead range over
distances that increase with the number of quanta making up the bound state cor-
responding to the hole. We find an effect called ‘fractionation’ which shows that in
a bound state of strings and branes the quantum effects stretch to distances of or-
der horizon scale (1.87). This is a crude estimate, but we can then return to simple
black hole states and construct them explicitly, finding in each case that there is no
horizon; instead the interior of the hole is a ‘fuzzball’.

The information paradox was important because its resolution would have to
challenge some basic assumptions that we have held about quantum gravity. We
do indeed find a change in our basic idea of how quantum gravity acts when we
have large dense systems of strings and branes. The goal is now to formalize this
understanding and apply it to other basic problems like the early Universe where
quantum gravity can be important.
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Chapter 2
Classical Yang–Mills Black Hole Hair
in Anti-de Sitter Space

E. Winstanley

Abstract The properties of hairy black holes in Einstein–Yang–Mills (EYM) theory
are reviewed, focusing on spherically symmetric solutions. In particular, in asymp-
totically anti-de Sitter space (adS) stable black hole hair is known to exist for su(2)
EYM. We review recent work in which it is shown that stable hair also exists in
su(N) EYM for arbitrary N, so that there is no upper limit on how much stable hair
a black hole in adS can possess.

2.1 Introduction

We begin by very briefly reviewing the “no-hair” conjecture and motivating the
study of hairy black holes.

2.1.1 The “no-hair” Conjecture

All sta-
tionary, asymptotically flat, four-dimensional black hole equilibrium solutions of
the Einstein equations in vacuum or with an electromagnetic field are characterized
by their mass, angular momentum, and (electric or magnetic) charge.

According to the no-hair conjecture, black holes are therefore extraordinarily
simple objects, whose geometry (exterior to the event horizon) is a member of the
Kerr–Newman family and completely determined by just three quantities (mass,
angular momentum and charge). Furthermore, these quantities are global charges
which can (at least in principle) be measured at infinity, far from the black hole event
horizon. If a black hole is formed by the gravitational collapse of a dying star, the
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77–79, 118] for detailed reviews and comprehensive lists of references):
The black hole “no-hair” conjecture [142] states that (see, for example, [51, 52,
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initial star will be a highly complex object described by many different parameters.
The final, equilibrium, black hole is, by contrast, rather simple and described by a
very small number of quantities. During the process of the formation of a black hole,
an enormous amount of (classical) information about the star which collapsed has
therefore been lost. Similarly, if a complicated object is thrown down a black hole
event horizon, once the system settles down, the only changes in the final state will
be changes in the total mass, total angular momentum and total charge. Advances
in astrometry [174] and future gravitational wave detectors [5] may even be able
to probe the validity of the “no-hair” conjecture for astrophysical black holes by
verifying that the mass, angular momentum and quadrupole moment Q2 of the black
hole satisfy the relation Q2 = J2/M which holds for Kerr black holes.

The “no-hair” conjecture, stated above, has been proved by means of much

dimensional spacetime and the electrovac Einstein equations. It is perhaps unsur-
prising that if one or more of these assumptions is relaxed, then the conjecture does
not necessarily hold. For example, if a negative cosmological constant is included,
so that the spacetime is no longer asymptotically flat but instead approaches anti-de
Sitter (adS) space at infinity, then the event horizon of the black hole is not necessarily
spherical, giving rise to “topological” black holes (see, for example, [18, 64, 97,
98, 103, 112, 165]). More recently, the discovery of “black ring” solutions in five
spacetime dimensions ([60], see [61] for a recent review) and the even more com-
plicated “black Saturn” [59] solutions indicates that Einstein–Maxwell theory has
a rich space of black solutions in higher dimensions, which are not given in terms
of the Myers-Perry [121] metric (which is the generalization of the Kerr–Newman
geometry to higher dimensions).

2.1.2 Hairy Black Holes

In this article we consider what happens when the other condition in the “no-hair”
conjecture, namely that the Einstein equations involve electrovac matter only, is re-
laxed. The “generalized” version of the no-hair conjecture [79] states that all station-
ary black hole solutions of the Einstein equations with any type of self-gravitating
matter field are determined uniquely by their mass, angular momentum and a set
of global charges. Even in asymptotically flat space, this conjecture does not hold,
even for the simplest type of self-gravitating matter, a scalar field. The first such
counterexample is the famous BBMB black hole [12, 13, 27] which has the same
metric as the extremal Reissner–Nordström black hole but possesses a conformally
coupled scalar field. However, this solution is controversial due to the divergence of
the scalar field on the event horizon [158] and is also highly unstable [48]. There-
fore, in some ways the first “hairy” black hole is considered to be the Gibbons
solution [71], which describes a Reissner–Nordström black hole with a non-trivial
dilaton field. While there are many results which rule out scalar field hair in quite
general models, particularly in asymptotically flat spacetimes (see, for example, [14]

complicated and beautiful mathematics (as reviewed in, for example, [51, 52,
77–79, 118]), subject to the assumptions of stationarity, asymptotic flatness, four-
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for a review), in recent years many other examples of black holes with non-trivial
scalar field hair have been found. For example, minimally coupled scalar field hair
has been found when the cosmological constant is positive [161] or negative [162]
and non-minimally coupled scalar field hair has also been considered (see, for ex-
ample, [176, 177] and references therein).

In this short review, we will focus on another particular matter model, Einstein–
Yang–Mills theory (EYM), where the matter is described by a non-Abelian (Yang-
Mills) gauge field. It is now well-known that this theory possesses “hairy” black hole
solutions, whose metric is not a member of the Kerr–Newman family (see [171] for
a detailed review). Furthermore, unlike the Kerr–Newman black holes, the geometry
exterior to the event horizon is not determined uniquely by global charges measure-
able at infinity, although only a small number of parameters are required in order to
describe the metric and matter field (see Sect. 2.3 for further details). All the asymp-
totically flat black hole solutions of pure EYM theory discovered to date are unsta-
ble [47] (however, there are examples of asymptotically flat, stable hairy black holes
in variants of the EYM action, such as Einstein–Skyrme [22, 58, 80, 81], Einstein-
non-Abelian-Proca [73, 110, 159, 160, 163] and Einstein–Yang–Mills–Higgs [1]
theories). This means that, while the “letter” of the no-hair theorem is violated in
this case (as there exist solutions which are not described by the Kerr–Newman met-
ric), its “spirit” is intact, as stable equilibrium black holes remain simple objects,
described by a few parameters if not exactly of the Kerr–Newman form (see [21]
for a related discussion along these lines).

The situation is radically different if one considers EYM solutions in asymptoti-
cally adS space, rather than asymptotically flat space. For su(2) EYM, at least some
black hole solutions with hair are stable [25, 26, 175]. These stable black holes
require one new parameter (see Sect. 2.4) to completely describe the geometry exte-
rior to their event horizons. Therefore, one might still argue that the true “spirit” of
the “no-hair” conjecture remains intact and that stable equilibrium black holes are
comparatively simple objects, described by just a few parameters.

One is therefore led to a natural question: are there hairy black hole solutions in
adS which require an infinite number of parameters to fully describe the geometry
and matter exterior to the event horizon? In other words, is there a limit to how
much hair a black hole in adS can be given? This is the question we will be seeking
to address in this article.

2.1.3 Scope of this Article

The subject of hairy black holes in EYM theory and its variants is very active, with
many new solutions appearing each year. The review [171], written in 1998, is very
detailed and thorough and contains a comprehensive list of references to solutions
known at that time. We have therefore not sought to be complete in our references
prior to that date, and have, instead, chosen to highlight a few solutions (the selection
being undoubtedly personal). Even considering just work after 1998, we have been



52 E. Winstanley

unable to do justice to the huge body of work in this area (for example, the seminal
paper [7] has 172 arXiv citations between 1999 and the time of writing) and have
instead chosen some examples of solutions. As well as [171], reviews of various as-
pects of solitons and black holes in EYM can be found in [21, 66, 72, 152, 153, 166].

The outline of this article is as follows. In Sect. 2.2 we will outline su(N) EYM
theory, including our ansatz for the gauge field and the form of the field equations.
We will then, in Sect. 2.3, briefly review some of the properties of the well-known
asymptotically flat solutions of this theory. Our main focus in this article are asymp-
totically adS black holes, and we begin our discussion of these in Sect. 2.4 by re-
viewing the key features of the su(2) EYM black holes in adS, before moving on to
describe very recent work on su(N), asymptotically adS, EYM black holes in Sect.
2.5. Our conclusions are presented in Sect. 2.6. Throughout this article the metric
has signature (−,+,+,+) and we use units in which 4πG = c = 1.

2.2 sususu(NNN) Einstein–Yang–Mills Theory

In this section we gather together all the formalism and field equations we shall
require for our later study of black hole solutions.

2.2.1 Ansatz, Field Equations and Boundary Conditions

In this article we shall be interested in four-dimensional su(N) EYM theory with a
cosmological constant, described by the following action, given in suitable units:

SEYM =
1
2

∫
d4x

√
−g

[
R−2Λ −TrFμνFμν] , (2.1)

where R is the Ricci scalar of the geometry and Λ the cosmological constant. Here
we have chosen the simplest type of EYM-like theory, many variants have been
studied in the literature (see, for example, [171] for a selection of examples).

Varying the action (2.1) gives the field equations

Tμν = Rμν −
1
2

Rgμν +Λgμν ;

0 = DμFν
μ = ∇μFν

μ +
[
Aμ ,Fν

μ]
; (2.2)

where the YM stress–energy tensor is

Tμν = TrFμλFν
λ − 1

4
gμνTrFλσFλσ . (2.3)

In this article we consider only static, spherically symmetric black hole geome-
tries, with metric given, in standard Schwarzschild-like co-ordinates, as
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ds2 = −μS2 dt2 +μ−1 dr2 + r2 dθ 2 + r2 sin2 θ dφ 2, (2.4)

where the metric functions μ and S depend on the radial co-ordinate r only. In the
presence of a negative cosmological constant Λ < 0, we write the metric function
μ as

μ(r) = 1− 2m(r)
r

− Λr2

3
. (2.5)

The most general, spherically symmetric, ansatz for the su(N) gauge potential
is [99]:

A = A dt +B dr +
1
2

(
C−CH)

dθ − i
2

[(
C +CH)

sinθ +Dcosθ
]

dφ , (2.6)

where A , B, C and D are all (N ×N) matrices and CH is the Hermitian conjugate
of C. The matrices A and B are purely imaginary, diagonal, traceless and depend
only on the radial co-ordinate r. The matrix C is upper triangular, with non-zero
entries only immediately above the diagonal:

Cj, j+1 = ω j(r)eiγ j(r), (2.7)

for j = 1, · · · ,N −1. In addition, D is a constant matrix:

D = Diag(N −1,N −3, · · · ,−N +3,−N +1) . (2.8)

Here we are primarily interested only in purely magnetic solutions, so we set A ≡ 0.
We may also take B ≡ 0 by a choice of gauge [99]. From now on we will assume
that all the ω j(r) are non-zero (see, for example, [69, 94–96] for the possibilities in
asymptotically flat space if this assumption does not hold). In this case one of the
Yang–Mills equations becomes [99]

γ j = 0 ∀ j = 1, · · · ,N −1. (2.9)

Our ansatz for the Yang–Mills potential therefore reduces to

A =
1
2

(
C−CH)

dθ − i
2

[(
C +CH)

sinθ +Dcosθ
]

dφ , (2.10)

where the only non-zero entries of the matrix C are

Cj, j+1 = ω j(r). (2.11)

The gauge field is therefore described by the N−1 functions ω j(r). We comment
that our ansatz (2.10) is by no means the only possible choice in su(N) EYM. Tech-
niques for finding all spherically symmetric su(N) gauge potentials can be found
in [6], where all irreducible models are explicitly listed for N ≤ 6.

With the ansatz (2.10), there are N − 1 non-trivial Yang–Mills equations for the
N −1 functions ω j:
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r2μω ′′
j +

(
2m−2r3 pθ −

2Λr3

3

)
ω ′

j +Wjω j = 0 (2.12)

for j = 1, . . . ,N −1, where a prime ′ denotes d/dr,

pθ =
1

4r4

N

∑
j=1

[(
ω2

j −ω2
j−1 −N −1+2 j

)2
]
, (2.13)

Wj = 1−ω2
j +

1
2

(
ω2

j−1 +ω2
j+1

)
, (2.14)

and ω0 = ωN = 0. The Einstein equations take the form

m′ = μG+ r2 pθ ,
S′

S
=

2G
r

, (2.15)

where

G =
N−1

∑
j=1

ω ′2
j . (2.16)

Altogether, then, we have N + 1 ordinary differential equations for the N + 1
unknown functions m(r), S(r) and ω j(r). The field equations (2.12) and (2.15) are
invariant under the transformation

ω j(r) →−ω j(r) (2.17)

for each j independently, and also under the substitution:

j → N − j. (2.18)

We are interested in black hole solutions of the field equations (2.12) and (2.15).
We assume there is a regular, non-extremal, black hole event horizon at r = rh,
where μ(r) has a single zero. This fixes the value of m(rh) to be:

2m(rh) = rh −
Λr3

h

3
. (2.19)

However, the field equations (2.12) and (2.15) are singular at the black hole event
horizon r = rh and at infinity r → ∞. We therefore need to impose boundary condi-
tions on the field variables m(r), S(r) and ω j(r) at these singular points. When the
cosmological constant Λ is zero, local existence of solutions of the field equations
in neighbourhoods of these singular points has been rigorously proved [100, 125].
This proof can be extended to the case when the cosmological constant is negative
[8, 11].

We assume that the field variables ω j(r), m(r) and S(r) have regular Taylor series
expansions about r = rh:
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m(r) = m(rh)+m′(rh)(r− rh)+O(r− rh)
2 ;

ω j(r) = ω j(rh)+ω ′
j(rh)(r− rh)+O(r− rh)

2 ;

S(r) = S(rh)+S′(rh)(r− rh)+O(r− rh) . (2.20)

Setting μ(rh) = 0 in the Yang–Mills equations (2.12) fixes the derivatives of the
gauge field functions at the horizon:

ω ′
j(rh) = − Wj(rh)ω j(rh)

2m(rh)−2r3
h pθ (rh)−

2Λr3
h

3

. (2.21)

Therefore the expansions (2.20) are determined by the N+1 quantitiesω j(rh), rh,
S(rh) for fixed cosmological constant Λ . For the event horizon to be non-extremal,
it must be the case that

2m′(rh) = 2r2
h pθ (rh) < 1−Λr2

h, (2.22)

which weakly constrains the possible values of the gauge field functions ω j(rh) at
the event horizon. Since the field equations (2.12) and (2.15) are invariant under the
transformation (2.17), we may consider ω j(rh) > 0 without loss of generality.

At infinity, we require that the field variables ω j(r), m(r) and S(r) converge to
constant values as r → ∞ and have regular Taylor series expansions in r−1 near
infinity:

m(r) = M +O
(
r−1) ; S(r) = 1+O

(
r−1) ; ω j(r) = ω j,∞+O

(
r−1) .

(2.23)

If the spacetime is asymptotically flat, with Λ = 0, then the values of ω j,∞ are
constrained to be

ω j,∞ = ±
√

j(N − j). (2.24)

This condition means that the asymptotically flat black holes have no magnetic
charge at infinity, or, in other words, these solutions have no global magnetic charge.
Therefore, at infinity, they are indistinguishable from Schwarzschild black holes.
However, if the cosmological constant is non-zero, so that the geometry approaches
(a)dS at infinity, then there are no a priori constraints on the values of ω j,∞. In
general, therefore, the (a)dS black holes will be magnetically charged. It should be
noted that the boundary conditions in the case when the cosmological constant Λ
is positive are more complex, as there is a cosmological horizon between the event
horizon and infinity.

2.2.2 Some “trivial” Solutions

Although the field equations (2.12) and (2.15) are highly non-linear and rather com-
plicated, they do have some trivial solutions which can easily be written down:
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Schwarzschild(-(a)dS) Setting

ω j(r) ≡±
√

j(N − j) (2.25)

for all j gives the Schwarzschild(-(a)dS) black hole with

m(r) = M = constant (2.26)

We note that, by setting M = 0, pure Minkowski (Λ = 0) or (a)dS (Λ �= 0) space
is also a solution.

Reissner–Nordström(-(a)dS) Setting

ω j(r) ≡ 0 (2.27)

for all j gives the Reissner–Nordström(-(a)dS) black hole with metric function

μ(r) = 1− 2M
r

+
Q2

r2 − Λr2

3
, (2.28)

where the magnetic charge Q is fixed by

Q2 =
1
6

N (N +1)(N −1) . (2.29)

Embedded su(2) solutions For our later numerical and analytic work, an addi-
tional special class of solutions turns out to be extremely useful. We begin by
setting

ω j(r) = ±
√

j(N − j)ω(r) ∀ j = 1, . . . ,N −1, (2.30)

then follow [100] and define

λN =

√
1
6

N (N −1)(N +1), (2.31)

and then rescale the field variables as follows:

R = λ−1
N r; Λ̃ = λ 2

NΛ ; m̃(R) = λ−1
N m(r);

S̃(R) = S(r); ω̃(R) = ω(r). (2.32)

Note that we rescale the cosmological constant Λ (this is not necessary in [100]
as there Λ = 0). The field equations satisfied by m̃(R), S̃(R) and ω̃(R) are then

dm̃
dR

= μG̃+R2 p̃θ ;

1

S̃

dS̃
dR

= −2G̃
R

;

0 = R2μ
d2ω̃
dR2 +

[
2m̃−2R3 p̃θ −

2Λ̃R3

3

]
dω̃
dR

+
[
1− ω̃2] ω̃ ; (2.33)
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where we now have

μ = 1− 2m̃
R

− Λ̃R2

3
, (2.34)

and

G̃ =
(

dω̃
dR

)2

, p̃θ =
1

2R4

(
1− ω̃2)2

. (2.35)

The (2.33) are precisely the su(2) EYM field equations. Furthermore, the bound-
ary conditions (2.20) and (2.23) also reduce to those for the su(2) case.

2.2.3 Dyonic Field Equations

As will be discussed in Sect. 2.4.3, if either N > 2 or we have a negative cosmo-
logical constant Λ , then we do not need to restrict ourselves to considering only
purely magnetic equilibrium gauge potentials. If the electric part of the gauge po-
tential (2.6), A , is non-zero, there is still sufficient gauge freedom to set B = 0
in (2.6) [99]. Then, provided none of the ω j vanish identically, one of the Yang–
Mills equations again tells us that all the γ j are identically zero. Following [99] it is
convenient to define new real variables α j(r) by

A j j = i

[
− 1

N

j−1

∑
k=1

kαk +
N−1

∑
k= j

(
1− k

N

)
αk

]
(2.36)

so that the matrix A is automatically purely imaginary, diagonal and traceless. In
this case the Yang–Mills equations (2.12) now take the form [99]

r2μω ′′
j +

(
2m−2r3 pθ −

2Λr3

3

)
ω ′

j +Wjω j +
μ
r2α

2
jω j = 0, (2.37)

and there are additional Yang–Mills equations for the α j, namely [99]

[
r2S−1 (μSα j)

′]′ = 2α jω2
j −α j−1ω2

j−1 −α j+1ω2
j+1. (2.38)

The Einstein equations retain the form (2.15) but the quantities pθ (2.13) and G
(2.16) now read [99]

pθ =
1

4r4

N

∑
j=1

[(
ω2

j −ω2
j−1 −N −1+2 j

)2
+

(
r2

S
(μSA j j)

′
)2

]

G =
N−1

∑
j=1

[
ω ′2

j +α2
jω2

j

]
. (2.39)
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2.2.4 Perturbation Equations

We are also interested in the stability of the static, equilibrium solutions. For sim-
plicity, we consider only linear, spherically symmetric perturbations of the purely
magnetic solutions. We return to the general gauge potential of the form (2.6), and
the metric (2.4), where now all functions depend on time t as well as r. There is still
sufficient gauge freedom to enable us to set A ≡ 0. This choice of gauge is partic-
ularly useful as then we shall shortly see that the perturbation equations decouple
into two sectors, the “gravitational” and “sphaleronic” sectors [102]. We consider
perturbations about the equilibrium solutions of the form

ω j(t,r) = ω j(r)+δω j(t,r), (2.40)

where ω j(r) are the equilibrium functions and δω j(t,r) are the linear perturbations.
There are similar perturbations for the other equilibrium quantities m and S, and in
addition we have the perturbations δγ j(t,r) and δβ j(t,r), the latter being the entries
along the diagonal of the matrix B (2.6):

B = Diag(iδβ1, · · · , iδβN) . (2.41)

Note that the δβ j are not independent because the matrix B is traceless, so

δβ1 + · · ·+δβN = 0, (2.42)

but it simplifies the derivation of the perturbation equations to retain all the δβ j for
the moment. We ignore all terms involving squares or higher powers of the pertur-
bations. The full derivation of the perturbation equations is highly involved and the
details will be presented elsewhere [11]. Instead here we summarize the key features
of the perturbation equations. As usual, we will employ the “tortoise” co-ordinate
r∗, defined by

dr∗
dr

=
1
μS

, (2.43)

where μ and S are the equilibrium metric functions.

2.2.4.1 Sphaleronic Sector

The sphaleronic sector consists of the 2N − 1 perturbations δβ j, j = 1, . . . ,N and
δγ j, j = 1, . . . ,N −1. We define new variables δΦ j by

δΦ j = ω jδγ j. (2.44)

The perturbation equations for the sphaleronic sector arise solely from the Yang–
Mills equations, and comprise
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δ β̈ j =
S
r2

[
ω j−1∂r∗

(
δΦ j−1

)
−ω j∂r∗ (δΦ j)

]

+
S
r2

[
(∂r∗ω j)δΦ j −

(
∂r∗ω j−1

)
δΦ j−1

]

+
μS2

r2

[
ω2

j

(
δβ j+1 −δβ j

)
−ω2

j−1

(
δβ j −δβ j−1

)]
; (2.45)

δΦ̈ j = ∂ 2
r∗ (δΦ j)−

1
ω j

(
∂ 2

r∗ω j
)
δΦ j +μSω j∂r∗

(
δβ j −δβ j+1

)

+[μ (∂r∗S)ω j +(∂r∗μ)Sω j +2μS (∂r∗ω j)]
(
δβ j −δβ j+1

)
; (2.46)

together with the Gauss constraint

0 = ∂r∗

(
δ β̇ j

)
+

[
2μS

r
− ∂r∗S

S

]
δ β̇ j +

S
r2

[
ω jδΦ̇ j +ω j−1δΦ̇ j−1

]
, (2.47)

where a dot denotes ∂/∂ t. It is important to note that the cosmological constant Λ
only appears in these equations through the metric function μ (2.5), and therefore
the perturbation equations (2.45) and (2.46) and the Gauss constraint (2.47) have
exactly the same form as derived in [47] for arbitrary gauge groups in asymptotically
flat space.

2.2.4.2 Gravitational Sector

The gravitational sector consists of the perturbations of the metric functions δμ and
δS as well as the perturbations of the remaining gauge field functions δω j. Both
the Einstein equations and the remaining Yang–Mills equations are involved in this
sector. For an arbitrary gauge group and asymptotically flat space, the perturbation
equations in this sector have been considered in [47]. In asymptotically adS, we
also find that the metric perturbations can be eliminated to give a set of equations
governing the perturbations δω j, which can be written in matrix form

δω̈ = ∂ 2
r∗ (δω)+MGδω , (2.48)

where δω = (δω1, . . . ,δωN−1)
T and the (N −1)× (N −1) matrix MG has entries

MG, j, j =
μS2

r2

[
Wj −2ω2

j

]
+

4
μSr

ϒ (∂r∗ω j)
2 +

8S
r3 Wjω j (∂r∗ω j) ;

MG, j, j+1 =
μS2

r2 ω jω j+1 +
4
μSr

ϒ (∂r∗ω j)
(
∂r∗ω j+1

)

+
8S
r3

[
Wjω j

(
∂r∗ω j+1

)
+Wj+1ω j+1 (∂r∗ω j)

]
;

MG, j,k =
4
μSr

ϒ (∂r∗ω j)(∂r∗ωk)+
8S
r3 [Wjω j (∂r∗ωk)+Wkωk (∂r∗ω j)] ; (2.49)
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where k �= j, j+1, andϒ is given in terms of the equilibrium metric functions μ and
S as follows:

ϒ =
1
μ
∂r∗μ +

1
S
∂r∗S +

μS
r

. (2.50)

2.3 Asymptotically Flat/de Sitter Solutions for sususu(N) EYM

We now turn to black hole solutions of the EYM field equations, beginning by briefly
reviewing some of the key features of solutions in asymptotically flat or asymptoti-
cally de Sitter space.

2.3.1 Asymptotically Flat, Spherically Symmetric sususu(2) Solutions

Apart from the trivial solutions given above (2.25) and (2.27), the first black hole
solutions of the EYM field equations were found by Yasskin [182], and correspond
to embedding the Reissner–Nordström electromagnetic gauge field into a higher–
dimensional gauge group. The metric of these solutions is still Reissner–Nordström.
Yasskin conjectured that his solutions were the only ones possible. This conjecture
was only shown to be false 25 years later [19, 101, 168, 169]. That the discovery of
hairy black holes in su(2) EYM took so long may be attributed to the conjecture that
there were no soliton solutions in this model. This conjecture is based on the fact
that there are no solitons in pure gravity (see, for example, [78, 104]); no solitons
in Einstein–Maxwell theory [77], no pure YM solitons in flat spacetime [53, 56]
and no EYM solitons in three spacetime dimensions [57]. However, once Bartnik
and McKinnon [7] had discovered non-trivial EYM solitons in four-dimensional
spacetime, Yasskin’s no-hair conjecture for EYM theory was quickly shown to be
false [19].

For su(2) EYM, it has been shown [23, 62, 67] that non-trivial solutions (i.e.,
solutions in which the gauge field is not essentially Abelian) must have a purely
magnetic gauge potential, which is described by a single gauge field function ω(r)
(2.10). Note that the ansatz (2.10) for su(2) is not the same as the Witten ansatz
[179] which was used in the original papers [7, 19], but it gives equivalent field
equations. In this case the su(2) EYM equations have the form

dm
dr

=
(

1− 2m
r

)(
dω
dr

)2

+
1

2r2

(
1−ω2)2

;

1
S

dS
dr

= −2
r

(
dω
dr

)2

;

0 = r2
(

1− 2m
r

)
d2ω
dr2 +

[
2m−

(
1−ω2

)2

r

]
dω
dr

+
[
1−ω2]ω. (2.51)
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It is the highly non-linear nature of these equations which allows for non-trivial
soliton and hairy black hole solutions, which may be thought of heuristically as
arising from a balancing of the gravitational and gauge field interactions (see [82]
for a recent discussion). The non-linear nature of the equations also means, however,
that (apart from the solutions for the Yang–Mills field on a fixed Schwarzschild
metric [28, 34]) solutions can only be found numerically.

The numerical work in [7, 19, 101, 168, 169] found discrete families of solutions
[156], indexed by the event horizon radius rh (with rh = 0 for solitons) and n, the
number of zeros of the single gauge field function ω , each pair (rh,n) identifying
a solution of the field equations. A key feature of the solutions is that n > 0, so
that the gauge field function must have at least one zero (or “node”). Later analytic
work [29, 149–151] rigorously proved these numerical features. The black holes are
“hairy” in the sense that they have no magnetic charge [23, 62, 67] and are therefore
indistinguishable at infinity from a standard Schwarzschild black hole. However, the
“hair”, that is, the non-trivial structure in the matter fields, extends some way out
from the event horizon, leading to the “no-short-hair” conjecture [122].

Although initially controversial [20, 24, 152, 173], rapidly it was accepted that
both the soliton [154] and the black hole solutions [155] are unstable. This insta-
bility is not unexpected if we consider the solutions as arising from a balancing of
the gauge field and gravitational interactions. Studies of the non-linear stability of
the solutions [183, 184] reveal that the gauge field “hair” either radiates away to
infinity or falls down the black hole event horizon, leaving, as the end-point, a bald
Schwarzschild black hole. Due to this instability, the black holes, while they vio-
late the “letter” of the no-hair conjecture, may be thought of as not contradicting its
“spirit”, and one might be led to conjecture that all stable black holes are fixed by
their mass, angular momentum and conserved charges.

Originally these hairy black holes were shown to be unstable using numerical
techniques [155] but the instability can also be shown analytically [68, 170]. In the
su(2) case, the perturbation equations (2.45), (2.46) and (2.48) simplify consider-
ably. The sphaleronic sector reduces to a single equation (see Sect. 2.4.2 below for
further details)

− ζ̈ = −∂ 2
r∗ζ +

[
μS2

r2

(
1+ω2)+

2
ω2

(
dω
dr∗

)2
]
ζ , (2.52)

while, on eliminating the metric perturbations, the gravitational sector also has just
one equation:

−δω̈ = −∂ 2
r∗ (δω) (2.53)

+
μS2

r2

[
3ω2 −1−4rω ′2

(
1
r
−

(
1−ω2

)2

r3

)
+

8
r
ωω ′ (ω2 −1

)]
δω.

The instability has been compared to that of the flat-space Yang–Mills sphaleron
[170], which has a single unstable mode. The situation is slightly more complicated
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here, due to the two sectors of perturbations. The sphaleronic sector certainly, as
its name suggests, mimics the perturbations of the flat-space sphaleron. It can be
shown [167] that the number of instabilities in the sphaleronic sector equals n, the
number of zeros of the gauge field function ω . The same is true in the gravitational
sector, as conjectured in [102] and can be shown using catastrophe theory, by con-
sidering the more general EYM–Higgs solutions [115]. The above concerns only
spherically symmetric perturbations. It is known that the flat-space sphaleron has
instabilities only in the spherically symmetric sector [4]. Extending this to the su(2)
EYM black holes requires complicated analysis [143], using a curvature-based for-
malism developed in [43, 144, 145].

Using the isolated horizons formalism, these “hairy” black holes can be inter-
preted as bound states of ordinary black holes with the Bartnik–MacKinnon soli-
tons [3, 54, 55]. In particular, the soliton masses are given in terms of the masses
of the corresponding black holes [55], and the instability of the colored black holes
arises naturally from the instability of the corresponding solitons [3, 54].

Since these initial discoveries a plethora of new, asymptotically flat, hairy black
hole solutions have been found in Einstein–Yang–Mills theory and its variants (see
[171] for a review of those solutions discovered prior to 1999). Most of these are,
indeed, unstable. However, there are notable exceptions, including (a) the Skyrme
black hole [22, 58, 80, 81] where the existence of an integer-valued topological
winding number renders the solutions stable, (b) Einstein–Yang–Mills–Higgs black
holes in the limit of infinitely strong coupling of the Higgs field [1] and (c) a par-
ticular branch of Einstein-non-Abelian-Proca black holes [73, 110, 159, 160, 163].
We will not consider additional matter fields further in this article.

2.3.2 Non-spherically Symmetric, Asymptotically Flat
sususu(2) Solutions

One of the surprising aspects of the failure of black hole uniqueness in EYM is
that almost every step in the uniqueness theorem in Einstein–Maxwell theory has
a counterexample in EYM (see [79] for detailed discussions on this topic, and [45,
128, 153, 156, 157] for examples of some results from Einstein–Maxwell theory
which do generalize). An important example of this is Israel’s theorem [86, 87],
which states that the geometry outside the event horizon of a static black hole must
be spherically symmetric. This is not true in EYM: there are static black hole so-
lutions which are not spherically symmetric but only axisymmetric [90] (in more
general matter models, static black holes do not necessarily possess any symmetries
at all [138, 139]). These solutions are found numerically by writing the metric in
isotropic co-ordinates

ds2 = − f (r,θ)dt2 +
m(r,θ)
f (r,θ)

dr2 +
m(r,θ)r2

f (r,θ)
dθ 2 +

L(r,θ)r2 sin2 θ
f (r,θ)

dφ 2, (2.54)
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and using the following ansatz for the su(2) gauge field [137]

A =
1
2r

{
τ p
φ [H1(r,θ)dr +(1−H2(r,θ))r dθ ]

−p
[
τ p

r H3(r,θ)+ τ p
θ (1−H4(r,θ))

]
r sinθ dφ

}
, (2.55)

where

τ p
r = τ.(sinθ cos pφ ,sinθ sin pφ ,cosθ) ,

τ p
θ = τ.(cosθ cos pφ ,cosθ sin pφ ,−sinθ) ,

τ p
φ = τ.(−sin pφ ,cos pφ ,0) , (2.56)

with
τ = (τx,τy,τz) , (2.57)

where τx, τy, τz are the usual generators of su(2). Here, p is a winding number, with
p = 1 corresponding to spherically symmetric solutions (with the gauge potential
written in a different form to that we have used in (2.10)). Substituting the ansatz into
the field equations gives a complicated set of partial differential equations, solutions
of which are exhibited in [90]. Static, axisymmetric soliton solutions also exist [65,
85, 91].

It is less surprising that rotating black holes also exist in this model [92, 93],
generalizing the Kerr–Newman metric (as predicted in [156]). These solutions are
indexed by the winding number p (2.56) and a node number n. They carry no
magnetic charge, but all have non-zero electric charge [156, 157]. The question
of whether there are rotating solitons in pure su(2) EYM has yet to be conclusively
settled, however. Rotating soliton solutions have been found in EYM–Higgs the-
ory [127], but not in pure EYM theory. Although rotating solitons are predicted
perturbatively [44], the consensus in the literature is now that it seems unlikely that
rotating soliton solutions do exist [17].

2.3.3 Asymptotically Flat sususu(N) Solutions

We shall next consider generalizations of the su(2) YM gauge group. The simplest
such generalization is to consider su(N) EYM. The results of [62, 67] do not ex-
tend to this larger gauge group, and it is possible to have solutions with electric
charge [69], which correspond to a superposition of electrically charged Reissner–
Nordström and the su(2) EYM black holes. Numerical solutions of the field equa-
tions have been found in the following papers: [69, 94–96]. As N increases, the
possible structures of the gauge field potential (2.6) become ever more complicated.
A method for computing all spherically symmetric su(N) gauge field potentials is
given in [6], where all the irreducible possibilities are enumerated for N ≤ 6. As
in the su(2) case, black hole solutions are found at discrete points in the parameter
space {ω j(rh), j = 1 . . .N −1}.
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There is comparatively little analytic work for more general gauge groups. Local
existence of solutions of the field equations (2.12) and (2.15) near the black hole
event horizon and at infinity has been proven for gauge group su(N) [100], and
subsequently extended to arbitrary compact gauge group [124, 125]. The existence
of non-trivial black hole solutions to the field equations has been proven rigorously
only in the su(3) case [140, 141], although there are arguments that hairy black
hole solutions exist for all N [116]. In the su(3) case, Ruan [140, 141] has proved
that there are infinitely many hairy black hole solutions, indexed by the numbers of
zeros (n1,n2), respectively, of the two gauge field functions (ω1,ω2). Furthermore,
provided that the radius of the event horizon is sufficiently large, there is a black
hole solution for any combination of (n1,n2). The global properties of the solutions
for arbitrary compact gauge group are studied in [126]. However, it will come as
no surprise to learn that all these solutions, in asymptotically flat space, and for any
compact gauge group, are unstable [46, 47]. To show instability it is sufficient to
find a single unstable mode, and therefore the work in [46, 47] studies the simpler,
sphaleronic sector of perturbations (see Sect. 2.2.4).

2.3.4 Asymptotically de Sitter sususu(222) EYM Solutions

Another natural generalization of asymptotically flat su(2) EYM is the inclusion of
a non-zero cosmological constant Λ . When the cosmological constant is positive,
soliton [172] and black hole [164] su(2) EYM solutions have been found (other
numerical solutions are presented in [41, 119]). These solutions possess a cosmo-
logical horizon and approach de Sitter space at infinity (for a complete classification
of the possible spacetime structures, see [30]). The phase space of solutions is again
discrete, and the single gauge field function ω must have at least one zero. Un-
surprisingly, these solutions again turn out to be unstable [42, 63, 164]. Given this
instability, the asymptotically de Sitter solutions have received rather less attention
in the literature, but some analytic work can be found in [105–107].

2.4 Asymptotically anti-de Sitter Solutions for sususu(2) EYM

We now turn to the main focus of this article: asymptotically anti-de Sitter solutions.
We begin by reviewing some of the properties of black holes in su(2) EYM.

2.4.1 Spherically Symmetric, Asymptotically adS, sususu(2) EYM
Solutions

Black hole solutions of su(2) EYM with a negative cosmological constant were first
studied in [175], and subsequently in [25, 26]. The field equations now take the form
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dm
dr

=
(

1− 2m
r

− Λr2

3

)(
dω
dr

)2

+
1

2r2

(
1−ω2)2

;

1
S

dS
dr

= −2
r

(
dω
dr

)2

;

0 = r2
(

1− 2m
r

− Λr2

3

)
d2ω
dr2 +

[
2m− 2Λr3

3
−

(
1−ω2

)2

r

]
dω
dr

+
[
1−ω2]ω. (2.58)

The inclusion of a negative cosmological constant means that boundary condi-
tions at infinity (2.23) are considerably less stringent than in the asymptotically
flat case; it is therefore unsurprising that it is easier to find solutions in asymptoti-
cally adS.

The space of solutions in adS is very different to that in asymptotically flat space.
Instead of finding solutions at discrete values of ω(rh), solutions exist in continu-
ous, open intervals. Furthermore, for sufficiently large |Λ |, we now find solutions
in which the single gauge field function ω(r) has no zeros. A typical example of
such a solution is shown in Fig. 2.1, further examples can be found in [175]. These
properties of the space of solutions of the (2.58) are proved in [175].

We now examine the structure of the space of solutions, more details of which
can be found in [8, 9, 175]. There are three parameters describing the solutions, rh,
Λ and ω(rh). In order to plot two-dimensional figures, we fix either rh orΛ and vary
the other two quantities. For su(2) black holes, the constraint (2.22) on the value of
the gauge field function at the event horizon reads

(
ω(rh)2 −1

)2
< r2

h

(
1−Λr2

h

)
. (2.59)

Fig. 2.1 An example of an su(2) EYM black hole in adS in which the gauge field function ω(r)
has no zeros. Here, Λ = −1, rh = 1 and ω(rh) = 0.7
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Fig. 2.2 The space of su(2) black hole solutions when Λ = −0.01, for varying rh. The shaded
region indicates values of the gauge field function ω(rh) at the event horizon for which the con-
straint (2.59) is satisfied, but for which we find no well-behaved black hole solution. The number
of zeros n of the gauge field function ω are indicated in those regions of the phase space where we
find black hole solutions. Elsewhere on the diagram, the constraint (2.59) is not satisfied. Between
the region where n = 2 and the shaded region we find black hole solutions with n = 3, 4 and 5, but
these regions are too small to indicate on the graph. Taken from [9]

Whether we are varying rh or Λ , we perform a scan over all values of ωh which
satisfy (2.59). First, we show in Fig. 2.2 the space of black hole solutions for fixed
Λ =−0.01 and varying event horizon radius rh. The outermost curves in Fig. 2.2 are
where the inequality (2.59) is saturated. Immediately inside these curves we have
a shaded region, which represents values of (rh,ω(rh)) for which the constraint
(2.59) is satisfied, but for which we are unable to find black hole solutions which
remain regular all the way out to infinity. Where we do find solutions, we indicate in
Fig. 2.2 the number of zeros of the gauge field function ω(r). The solution for which
ω(rh) = 1 is simply the Schwarzschild-adS black hole, while that for ω(rh) = 0 is
the magnetically charged Reissner–Nordström-adS black hole (see Sect. 2.2.2). As
rh → 0, the constraint (2.59) implies that ω(rh) → 1, as can be seen in Fig. 2.2.
The black hole solutions become solitons in this limit. However, for this value ofΛ ,
there are different soliton solutions, with ω having different numbers of zeros [31],
a feature which is not readily apparent from Fig. 2.2. We find similar behavior on
varying rh for different values of Λ .

If we now fix the event horizon radius to be rh = 1 and varyΛ , the solution space
is shown in Fig. 2.3, with a close-up for smaller values of |Λ | in Fig. 2.4.

Again, in Figs. 2.3 and 2.4 we have shaded those regions where the constraint
(2.59) is satisfied, but no regular black hole solutions could be found. Where we
do find solutions, the number of zeros of the gauge field function ω(r) is indicated
in the figures. As Λ → 0, the phase space breaks up into discrete points, which
correspond to the asymptotically flat “colored” su(2) black holes described in Sect.
2.3.1 [19]. For sufficiently large |Λ |, we find solutions in which the gauge field
function has no zeros.
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Fig. 2.3 Phase space of su(2) black holes with rh = 1 and varying Λ . The shaded region indicates
values of the gauge field function ω(rh) at the event horizon for which the constraint (2.59) is
satisfied, but for which we find no well-behaved black hole solution. The number of zeros n of the
gauge field function ω are indicated in those regions of the phase space where we find black hole
solutions. Elsewhere on the diagram, the constraint (2.59) is not satisfied. As well as the regions
where n = 0, . . . ,4 as marked on the diagram, we find a small region in the bottom left of the plot
where n = 5. This region is too small to indicate on the current figure, but can be seen in Fig. 2.4.
Taken from [9]

The spectrum of black hole solutions (that is, the relationship between the mass
M and magnetic charge Q of the black holes) was first studied in [26]. We plot in
Fig. 2.5 the black hole mass versus magnetic charge for black holes with rh = 1
and varying values of Λ (cf. Fig. 8 in [26]). For large values of |Λ |, there are only
nodeless solutions and the spectrum is simple, with the black holes being uniquely

Fig. 2.4 Close-up of the phase space of su(2) black holes with rh = 1 and smaller values of Λ . In
the bottom left of the plot there is a small region of solutions for which n = 7, but the region is too
small to be visible. Taken from [9]
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Fig. 2.5 Black hole mass M and magnetic charge Q for su(2) EYM black holes with rh = 1 and
varying Λ (cf. Fig. 8 in [26])

specified by Λ , rh and QM . As |Λ | decreases, the spectrum becomes more compli-
cated. For example, looking at the Λ = −0.1 curve in Fig. 2.5 we see that a branch
structure emerges. The lower M curve for Λ = −0.1 consists of n = 0 (nodeless)
solutions, and extends from negative Q up to Q = 1. When Q = 1, a branch of n = 1
solutions appears, which have larger mass. As Q decreases along this branch of solu-
tions, the mass M increases, until a bifurcation point is reached and a second branch
of n = 1 solutions appears, with even larger mass, and with the charge increasing
as M increases. For smaller values of |Λ |, we find ever more complicated spectra,
which appear to become “fractal” as |Λ | → 0 [26, 114]. In view of the catastro-
phe theory analysis of other hairy black hole solutions [159, 160, 163], one might
anticipate that the stability of the solutions changes at the points in the spectrum
where two branches of solutions meet, but this has yet to be fully investigated in
the literature (see [31] for an in-depth stability analysis of the soliton solutions). We
therefore next consider the stability of these black holes.

2.4.2 Stability of the Spherically Symmetric Solutions

As discussed in Sect. 2.3.1, for the asymptotically flat su(2) EYM black holes, it
has been shown that the number of instabilities is twice the number of zeros of the
gauge field function ω(r). Therefore, one might anticipate that at least some solu-
tions when ω(r) has no zeros could be stable. For the su(2) EYM case, the pertur-
bation equations (2.45), (2.46) and (2.48) simplify considerably. In the sphaleronic
sector, there is a single δΦ (2.44) and two further perturbations δβ1, δβ2, although
these are not independent (2.42), so we may consider just δν = δβ2 − δβ1. The
sphaleronic sector perturbations equations (2.45) and (2.46) then reduce to
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δ ν̈ =
2S
r2 [ω∂r∗ (δΦ)− (∂r∗ω)δΦ ]− 2μS2

r2 ω2δν ; (2.60)

δΦ̈ = ∂ 2
r∗ (δΦ)− 1

ω
(
∂ 2

r∗ω
)
δΦ−μSω∂r∗ (δν)

+[μ (∂r∗S)ω+(∂r∗μ)Sω−2μS (∂r∗ω)]δν ; (2.61)

and the Gauss constraint (2.47) is now

0 = ∂r∗ (δ ν̇)+
[

2μS
r

− ∂r∗S
S

]
δ ν̇+

S
r2ωδΦ̇ . (2.62)

By introducing a new variable ζ (note our notation above is different from that
used in [175])

ζ =
r2

S
δν , (2.63)

the sphaleronic sector then reduces to a single equation [175]

− ζ̈ = −∂ 2
r∗ζ +

[
μS2

r2

(
1+ω2)+

2
ω2

(
dω
dr∗

)2
]
ζ , (2.64)

while the gravitational sector (2.48) also has just one equation:

−δω̈ = −∂ 2
r∗ (δω) (2.65)

+
μS2

r2

[
3ω2 −1−4rω ′2

(
1
r
−Λr−

(
1−ω2

)2

r3

)
+

8
r
ωω ′ (ω2 −1

)]
δω.

The sphaleronic sector equation (2.64) is exactly the same as that in the asymp-
totically flat su(2) EYM case (2.52), but the gravitational sector equation (2.53)
unsurprisingly is modified by the presence of non-zero Λ . Both (2.64) and (2.65)
have the standard Schrödinger form

−Ψ̈ = −∂ 2
r∗Ψ +UΨ , (2.66)

with potential U . For the sphaleronic sector, when the gauge field function ω(r)
has no zeros, it is immediately clear that the potential U is positive, so there are no
instabilities in this sector (this result does not hold in the asymptotically flat case
because the zeros of ω(r) in that case mean that U is not regular). The gravita-
tional sector potential is more complex to analyze, but, for sufficiently large |Λ | and
ω(rh) > 1/

√
3, it can be shown that the potential is positive and there are no insta-

bilities in this sector either. Therefore there are at least some hairy black holes which
are stable under linear, spherically symmetric, perturbations. It can further be proved
that at least some of these solutions remain stable when non-spherically symmetric
perturbations are considered [146, 178] but the analysis is highly involved and so
we do not attempt to summarize it here.
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It should be remarked that it is unlikely that all nodeless black hole solutions are
stable, although this has not been investigated in the literature. An in-depth study
of the corresponding solitonic solutions [31] has revealed that some soliton solu-
tions for which ω(r) has no zeros, although they do not have any instabilities in
the sphaleronic sector, do possess unstable modes in the gravitational sector. A scal-
ing behavior analysis of the solitonic solutions [83] has shown that the stable soli-
ton solutions can be approximated well by the stable solitons which exist on pure
adS space. On the other hand, the unstable solitons are interpreted as the unstable
Bartnik–MacKinnon solitons [7] dressed with solitons on pure adS.

2.4.3 Other Asymptotically Anti-de Sitter sususu(2) EYM Solutions

2.4.3.1 Dyonic Solutions

In asymptotically adS, it is no longer the case that the only genuinely non-Abelian
solutions must have vanishing electric part in the gauge potential (2.6), so the re-
sults of [62, 67] do not extend to non-asymptotically flat solutions. As well as the
magnetically charged solutions described above, dyonic black holes were discussed
in [25, 26], which we shall not consider further here. The stability of the dyonic
solutions remains an open question as the perturbation equations do not decouple
into two sectors in this case, making analysis difficult.

2.4.3.2 Topological Black Holes

As in Einstein–Maxwell theory, topological black hole solutions exist for su(2)
EYM in adS [16]. The metric in this case reads

ds2 = −μS2 dt2 +μ−1 dr2 + r2 dθ 2 + r2 f 2(θ)dφ 2, (2.67)

where

f (θ) =

⎧⎨
⎩

sinθ for k = 1,
θ for k = 0,
sinhθ for k = −1,

(2.68)

and

μ = k− 2m(r)
r

− Λr2

3
. (2.69)

The ansatz for the purely magnetic gauge field potential is now [16]

A = τxω(r)dθ +
[
τyω(r)+ τz

d ln f
dθ

]
f (θ)dφ . (2.70)



2 Classical Yang–Mills Black Hole Hair in Anti-de Sitter Space 71

When Λ = 0, only spherically symmetric solutions with k = 1 are possible, but
for Λ < 0, solutions with both k = 0 and k = −1 have been found [16]. All the
solutions are nodeless, which can be easily proved from the field equations [16]. It
is found in [16] that all the k = 0 solutions are stable under spherically symmetric
perturbations in both the sphaleronic and the gravitational sectors. The same is true
for the k = −1 solutions for which ω > 1 as r → ∞ [16].

2.4.3.3 Non-spherically Symmetric Solutions

As in the asymptotically flat case, there are both soliton [129] and black hole [136]
solutions which are static but not spherically symmetric, so that the metric and gauge
potential take the form (2.54) and (2.55). Rotating black holes have also been found
[113], and there are also rotating dyonic soliton solutions [131].

2.5 Asymptotically Anti-de Sitter Solutions for sususu(N) EYM

In the previous section we found that stable hairy black holes exist in su(2) EYM
with a sufficiently large and negative cosmological constant. A natural question is
therefore whether there are stable hairy black hole solutions of su(N) EYM in adS,
and we examine this question in this section.

2.5.1 Spherically Symmetric Numerical Solutions

For any fixed N, the field equations (2.12) and (2.15) can be solved numerically
using standard techniques. We will outline briefly some of the key features of the
black hole solutions for su(3) EYM. Details of the corresponding soliton solutions
and the solution space for su(4) EYM can be found in [9].

For su(3) EYM, there are two gauge field functions ω1(r) and ω2(r), and there-
fore four parameters describing black hole solutions: rh, Λ , ω1(rh) and ω2(rh). Us-
ing the symmetry of the field equations (2.17), we set ω1(rh),ω2(rh) > 0 without
loss of generality. The constraint (2.22) on the values of the gauge field functions at
the horizon becomes, in this case

[
ω1(rh)2 −2

]2
+

[
ω1(rh)2 −ω2(rh)2]2

+
[
2−ω2(rh)2]2

< 2r2
h

(
1−Λr2

h

)
. (2.71)

Two typical black hole solutions are shown in Figs. 2.6 and 2.7. The metric func-
tions behave in a very similar way to the su(2) solutions, smoothly interpolating
between their values at the horizon and at infinity. We note that S(r) in particular
converges very rapidly to 1 as r → ∞. In Fig. 2.6, we show an example of a black
hole solution in which both gauge field functions have no zeros. We note that both
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Fig. 2.6 Typical su(3) black hole solution, with rh = 1, Λ = −1, ω1(rh) = 1.2 and ω2(rh) = 1.3.
In this example, both gauge field functions have no zeros. Taken from [9]

Fig. 2.7 Example of an su(3) black hole solution, with rh = 1, Λ = −0.0001, ω1(rh) = 1.184 and
ω2(rh) = 1.216. In this case, both gauge field functions have three zeros. Taken from [9]

gauge field functions are monotonic, however, one is monotonically increasing and
the other monotonically decreasing. In our second example (Fig. 2.7) both gauge
field functions have three zeros. Although, in both our examples the two gauge field
functions have the same number of zeros, we also find solutions where the two gauge
field functions have different numbers of zeros (see Figs. 2.8 and 2.9).

We now examine the space of black hole solutions. Since we have four parame-
ters, in order to produce two-dimensional figures, we need to fix two parameters in
each case. We find that varying the event horizon radius produces similar behavior
to the su(2) case, so for the remainder of this section we fix rh = 1 and consider the
phase space for different, fixed values of Λ , scanning all values of ω1(rh), ω2(rh)
such that the constraint (2.71) is satisfied. From the discussion in Sect. 2.2, we have
embedded su(2) black hole solutions when, from (2.30)
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Fig. 2.8 Solution space for su(3) black holes with rh = 1 and Λ = −0.1. The numbers of zeros of
the gauge field functions for the various regions of the solution space are shown. For other values
of ω1(rh), ω2(rh) we find no solutions. There is a very small region containing solutions in which
both gauge field functions have no zeros, in the top-right-hand corner of the plot. Taken from [9]

Fig. 2.9 Solution space for su(3) black holes with rh = 1 andΛ =−1. The shaded region indicates
where the constraint (2.71) is satisfied but we do not find black hole solutions. Outside the shaded
region the constraint (2.71) does not hold. Where there are solutions, we have indicated the number
of zeros of the gauge field functions within the different regions. For this value ofΛ there is a large
region in which both gauge field functions have no zeros. Taken from [9]

ω1(r) =
√

2ω(r) = ω2(r) (2.72)

which occurs when ω1(rh) = ω2(rh).
In Figs. 2.8, 2.9 and 2.10 we plot the phase space of solutions for fixed event

horizon radius rh = 1 and varying cosmological constant Λ = −0.1, −1 and −5,
respectively. In each of Figs. 2.8, 2.9 and 2.10 we plot the dashed line ω1(rh) =
ω2(rh), along which lie the embedded su(2) black holes. It is seen in all these figures
that the solution space is symmetric about this line, as would be expected from the
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Fig. 2.10 Solution space for su(3) black holes with rh = 1 and Λ = −5. It can be seen that for
the vast majority of the phase space for which the constraint (2.71) is satisfied, we have black hole
solutions in which both gauge field functions have no zeros. Taken from [9]

symmetry (2.18) of the field equations. The solution space is found to be symmetric
about the line ω1(rh) = ω2(rh) not only in terms of where we find solutions but
also in terms of the numbers of zeros of the gauge field functions. To state this
precisely, suppose that at the point ω1(rh) = a1, ω2(rh) = a2 we find a black hole
solution in which ω1(r) has n1 zeros and ω2(r) has n2 zeros. Then, at the point
ω1(r) = a2, ω2(r) = a1, we find a black hole solution in which ω1(r) has n2 zeros
and ω1(r) has n1 zeros. This is clearly seen in Figs. 2.8 and 2.9 and follows from the
symmetry (2.18) of the field equations. As we increase |Λ |, we find (see Figs. 2.8,
2.9, and 2.10) that the solution space expands as a proportion of the space of values
of ω1(rh), ω2(rh) satisfying the constraint (2.71). It can also be seen from Figs. 2.8,
2.9 and 2.10 that the number of nodes of the gauge field functions decreases as |Λ |
increases and that the space of solutions becomes simpler. For Λ = −0.1, there is
a very small region of the solution space where both gauge field functions have no
zeros. This region expands as we increase |Λ |, until for Λ = −5, both gauge field
functions have no zeros for all the solutions we find.

The solution space becomes progressively more complicated as N increases, due
to the increased number of parameters required to describe the solutions. However,
the key feature described above is found; namely that for sufficiently large |Λ |, all
the solutions we find are such that all the gauge field functions ω j have no zeros.
These solutions are of particular interest since one might hope that at least some of
them might be stable.

As with the su(2) black holes we may consider the spectra of black hole solutions
by plotting the relationship between the mass M and the magnetic charge Q of the
solutions (see Fig. 2.5 for the su(2) case). As may be expected, for higher N the
spectra are even more complicated than for su(2). In Fig. 2.11 we plot some of
the possible values of M and Q for su(3) EYM black holes with Λ = −0.1 and
rh = 1. In Fig. 2.11 we have color coded the various possible numbers of zeros of
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Fig. 2.11 Black hole mass M versus magnetic charge Q for su(3) EYM black holes with rh = 1 and
Λ = −0.1. There are many different combinations of number of zeros of the gauge field functions
(see Fig. 2.8), which are indicated by different colors. Here we have performed a scan over a grid of
possible values of the gauge field functions at the event horizon, ω1(rh), ω2(rh), leading to discrete
points in the spectrum. This is to enable the complicated structure of the spectrum to be seen

the gauge field functions (cf. Fig. 2.8). We have used a discrete grid of initial values
of the gauge field functions at the event horizon (ω1(rh),ω2(rh)) and plotted discrete
points so that at least some of the structure can be seen. In this case, because we have
a four-parameter (Λ ,rh,ω1(rh),ω2(rh)) space of solutions of the field equations,
even when Λ and rh are fixed, we obtain two-dimensional regions in the (M,Q)
plane, rather than curves as in the su(2) case. It can be seen from Fig. 2.11 that the
spectrum is very complicated, with the regions corresponding to different numbers
of zeros of the gauge field functions overlapping. It is certainly the case that the
black holes cannot be uniquely characterized by the four parameters (Λ ,rh,M,Q).

2.5.2 Analytic Work

For any fixed value of N, it is possible to examine the space of solutions numeri-
cally. However, we would like to know whether there are solutions for all N, and, in
particular, whether for all N there are some solutions for which all the gauge field
functions have no zeros, which we expect to be the case for sufficiently large |Λ |.
Answering this question for general N requires analytic rather than numerical work.

In [175], the existence of black hole solutions for which the gauge function ω(r)
had no zeros was proven analytically in the su(2) case. Since su(2) solutions can be
embedded as su(N) solutions via (2.30), we have automatically an analytic proof of
the existence of nodeless su(N) EYM black holes in adS. However, these embedded
solutions are “trivial” in the sense that they are described by just three parameters:
rh, Λ and ω(rh). The question is therefore whether the existence of “non-trivial”
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(that is, genuinely su(N)) solutions in which all the gauge field functions ω j(r) have
no zeros can be proven analytically. The answer to this question is affirmative and
involves a generalization to su(N) of the continuity-type argument used in [175].
The details are lengthy and will be presented elsewhere [11]. Here we simply outline
the key steps in the proof.

The main idea of the proof is sketched in Fig. 2.12. We wish to find black hole
solutions which are regular on the event horizon, regular everywhere outside the
event horizon and regular at infinity. The proof proceeds via the following steps:

1. We first prove (generalizing the analysis of [100] to include Λ ) that the field
equations (2.12) and (2.15) and initial conditions at the event horizon (2.20) pos-
sess, locally in a neighborhood of the horizon, solutions which are analytic in
r, rh, Λ and the parameters ω j(rh). As might be expected, the analysis of [100]
requires only minor modifications to include a negative cosmological constant.

2. This enables us to prove that, in a sufficiently small neighborhood of any em-
bedded su(2) solution in which ω(r) has no nodes, there exists (at least in a
neighborhood of the event horizon) an su(N) solution in which all the ω j(r)
have no nodes.

3. Using the analyticity properties of the solutions of the field equations, we then
show that these su(N) solutions can be extended out to large rL � rh, provided
the initial parameters ω j(rh) are sufficiently close to those of an embedded su(2)
solution in which ω(r) has no zeros. Furthermore, by analyticity, none of the
ω j(r) will have any zeros between the event horizon rh and rL.

4. The key part of the proof lies in then showing that these su(N) solutions can be
further extended out to r →∞ and that they satisfy the boundary conditions (2.23)
at infinity. This part of the analysis uses the properties of the Yang–Mills field
equations (2.12) in the asymptotically adS regime. As in the su(2) case [175],
these have very different properties from the asymptotically flat case, and this
makes it much easier to prove the existence of solutions. Furthermore, it can be
shown that the gauge field functions ω j(r) will have no zeros for r ≥ rL.

Fig. 2.12 Sketch of the main
steps in the proof of the
existence of non-trivial su(N)
EYM black holes in adS for
which all the gauge field
functions have no zeros.
We wish to find black hole
solutions which are regular
on the event horizon regular
everywhere outside the event
horizon and regular at infinity.
We thank J. E. Baxter for
providing this sketch
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In summary, this process gives genuinely su(N) black hole solutions in which all
the gauge field functions have no zeros and which are characterized by the N + 1
parameters rh, Λ and ω j(rh).

2.5.3 Stability Analysis of the Spherically Symmetric Solutions

The remaining outstanding question is whether these new black holes, with poten-
tially unbounded amounts of gauge field hair, are stable. We consider linear, spher-
ically symmetric perturbations only for simplicity. The analysis of [146, 178] in
the su(2) case revealed that, for sufficiently large |Λ |, stability under spherically
symmetric perturbations continued to hold also for non-spherically symmetric per-
turbations, and one might hope that a similar result will hold in the more complex
su(N) case. However, we leave this for future work. Even for spherically symmetric
perturbations, the analysis is highly involved in the su(N) case and the details will
be presented elsewhere [8, 11]. Here we briefly outline just the key features. The
perturbation equations themselves can be found in Sect. 2.2.4.

2.5.3.1 Sphaleronic Sector

The sphaleronic sector consists of the perturbation equations (2.45) and (2.46) to-
gether with the Gauss constraint (2.47). The analysis of this sector essentially fol-
lows that of [47] in the asymptotically flat case. We begin by defining yet more new
variables, δε j, for j = 1, . . . ,N by

δε j = r
√
μδβ j, (2.73)

then, after much algebra, the sphaleronic sector perturbation equations can be cast
in the form

−Ψ̈ = MSΨ , (2.74)

where the (2N −1)-dimensional vectorΨ is defined by

Ψ = (δε1, . . . ,δεN ,δΦ1, . . . ,δΦN−1) . (2.75)

and MS is a self-adjoint, second order, differential operator (involving derivatives
with respect to r but not t), depending on the equilibrium functions ω j(r), m(r)
and S(r). The operator MS can be written as the sum of three parts. The first is of
the form χ†χ for a particular first-order differential operator χ (whose precise form
can be found in [8, 11]) and is therefore manifestly positive and is regular if the
gauge field functions ω j have no zeros. The second part vanishes when applied to a
physical perturbation due to the Gauss constraint (2.47). The third part is a matrix
V which does not contain any differential operators. It can be shown that the matrix
V is regular and positive definite provided the unperturbed gauge functions ω j(r)
have no zeros and satisfy the N −1 inequalities
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Fig. 2.13 Phase space of black hole solutions in su(3) EYM withΛ =−10 and rh = 1. The shaded
region shows where solutions exist which satisfy the inequalities (2.76) at the event horizon. Taken
from [10]

ω2
j > 1+

1
2

(
ω2

j+1 +ω2
j−1

)
(2.76)

for all j = 1, . . .N −1 and all r ≥ rh. The inequalities (2.76) define a non-empty
subset of the parameter space. For example, we show in Fig. 2.13 where the in-
equalities (2.76) are satisfied for the gauge field functions at the event horizon, for
the particular case of Λ = −10 and rh = 1. From Fig. 2.13 we can see that there are
some nodeless solutions which satisfy the inequalities (2.76) at the event horizon.
For any N, it can also be proved analytically that, for sufficiently large |Λ |, there are
non-trivial su(N) solutions, in a neighborhood of some embedded su(2) solutions,
such that the inequalities (2.76) are satisfied at the event horizon.

However, the requirements of (2.76) are considerably stronger, as the inequalities
have to be satisfied for all r ≥ rh. Our analytic work shows that, in fact, for any N
and sufficiently large |Λ |, there do exist solutions to the field equations for which
the inequalities (2.76) are indeed satisfied for all r. This involves proving that for at
least some solutions for which the gauge field function values at the event horizon lie
within the region where the inequalities (2.76) are satisfied, the gauge field functions
remain within this open region. In Fig. 2.14 we show an example of such a solution
for su(3) EYM.

2.5.3.2 Gravitational Sector

As might be expected, the gravitational sector perturbation equations (2.48) are
more difficult to analyze than the sphaleronic sector perturbation equations. For
stable solutions, we require the matrix MG (2.49) to be negative definite. For suffi-
ciently large |Λ |, it can be shown that MG is indeed negative definite for embedded
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Fig. 2.14 An example of an su(3) solution for which the inequalities (2.76) are satisfied for all
r ≥ rh. In this example, Λ = −10, rh = 1 and the values of the gauge field functions at the event
horizon are ω1(rh) = 2, ω2(rh) = 1.95. Taken from [10]

su(2) solutions, provided that ω2(r) > 1 for all r ≥ rh (the existence of such su(2)
solutions is proved, for sufficiently large |Λ |, in [175]). As described in Sect. 2.5.2
above, our analytic work ensures the existence of genuinely su(N) solutions in a
sufficiently small neighborhood of these embedded su(2) solutions. These su(N)
solutions are such that the inequalities (2.76) are satisfied for all r ≥ rh (and there-
fore the solutions are stable under sphaleronic perturbations). The negativity of MG

can then be extended to these genuinely su(N) solutions using an analyticity argu-
ment, based on the nodal theorem of [2] (see also [178] for a similar argument for
the non-spherically symmetric perturbations of the su(2) EYM black holes). The
technical details of this argument will be presented elsewhere [11].

The conclusion of the work in this section is that there are at least some genuinely
su(N) EYM black holes in adS, for sufficiently large |Λ |, for which all the gauge
field functions ω j have no zeros, and which are stable under spherically symmetric
perturbations in both the sphaleronic and the gravitational sectors.

2.6 Summary and Outlook

In this review we have studied classical, hairy black hole solutions of su(N) EYM
theory, particularly spherically symmetric spacetimes and black holes in adS. We
very briefly discussed some of the key aspects of the solutions in asymptotically flat
space, which have been extensively reviewed in [171]. Hairy black hole solutions
exist for all N, with N −1 gauge field degrees of freedom [116], however, all these
solutions are unstable [47]. Therefore, while these hairy black holes violate the “let-
ter” of the no-hair conjecture (that is, their geometry is not completely fixed by
global charges measurable at infinity), its “spirit” is maintained. In particular, stable
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equilibrium black holes are comparatively simple objects, described completely by
just a few parameters.

The main conclusion of this article is that this is not true in adS. The existence
of stable hairy black holes in su(2) EYM [175] did not really contradict the “spirit”
of the no-hair conjecture, as only a single additional parameter was required to fix
the geometry outside the event horizon. However, the recent work [10] which shows
that there are stable hairy black holes in su(N) EYM in adS for arbitrarily large
N changes the picture completely. For sufficiently large |Λ |, an infinite number
of parameters are required in order to describe stable black holes. We might flip-
pantly describe these as “furry” black holes, since they possess copious amounts
of hair.

What are the consequences for black hole physics in adS of these “furry” black
holes? These need to be explored. Given the huge amount of interest in the adS/CFT
correspondence in string theory [111, 180, 181], a natural question is how black
hole hair in the bulk asymptotically adS spacetime relates to the dual CFT. In par-
ticular, it has been suggested [76] that there should be observables in the dual (de-
formed) CFT which are sensitive to the presence of black hole hair. Another ex-
ample of this approach can be found in [70], where an adS/CFT interpretation is
given of some stable seven-dimensional black holes with so(5) gauge fields. We
would expect that, in analogy with the su(2) case [49, 50, 74, 84, 113, 130, 132],
there are solutions in some super-gravity theories with a gauge group containing
an su(N) factor, which will need to be studied in the context of adS/CFT. There is
evidence [117] that there are non-trivial black hole solutions of su(∞) EYM in adS,
giving black holes not just with unbounded amounts of hair, but infinite amounts of
hair, at least in the limit |Λ | → ∞. It remains to be seen whether exact solutions of
the su(∞) field equations can be found for finite Λ < 0 and whether any of these
black holes are stable. If so, then their role in adS/CFT would be puzzling indeed.

Due to space restrictions, there are many aspects of black holes in EYM which
we have not been able to discuss. In particular, we have not mentioned the vast
number of solutions which involve modifications of the EYM action (2.1), including
higher curvature terms (see, for example, [88, 89]) or the inclusion of dilaton (see,
for example, [134]), Higgs (see, for example, [15, 108, 109]) or other modifications
of the EYM action (see, for example, [120, 147, 148]). Here we have also only
studied four-dimensional spacetimes, while recent work has considered EYM in
higher-dimensional spacetimes (see, for example, [32, 33, 35–40, 75, 123, 133, 135]
and [166] for a review).

The black hole solutions of EYM and its variants certainly exhibit an abundantly
rich structure, and no doubt will have more surprises in store for us in the future.
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Chapter 3
Black Hole Thermodynamics and Statistical
Mechanics

S. Carlip

Abstract We have known for more than 30 years that black holes behave as thermo-
dynamic systems, radiating as black bodies with characteristic temperatures and
entropies. This behavior is not only interesting in its own right; it could also,
through a statistical mechanical description, cast light on some of the deep prob-
lems of quantizing gravity. In these lectures, I review what we currently know about
black hole thermodynamics and statistical mechanics, suggest a rather speculative
“universal” characterization of the underlying states, and describe some key open
questions.

3.1 Introduction

Black holes are black bodies.
Since the seminal work of Hawking [1] and Bekenstein [2], we have understood

that black holes behave as thermodynamic objects, with characteristic temperatures
and entropies. Hawking radiation has not yet been directly observed, of course;
a typical stellar mass black hole has a Hawking temperature of well under a mi-
crokelvin, far lower than that of the cosmic microwave background. But the ther-
modynamic properties of black holes are well understood, having been confirmed
by a great many independent methods that all yield the same quantitative results: a
temperature

kTHawking =
h̄κ
2π

(3.1)

and an entropy

SBH =
Ahorizon

4h̄G
, (3.2)

where Ahorizon is the horizon area and κ is the surface gravity.
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In a typical thermodynamic system, thermal properties are the macroscopic
echoes of microscopic physics. Temperature is a measure of the average energy
of microscopic constituents; entropy counts the number of microstates. It is natural
to ask whether the same is true for the black hole. This is an important question: the
Bekenstein–Hawking entropy depends on both Planck’s and Newton’s constants,
and a statistical mechanical description of black hole thermodynamics might tell
us something profound about quantum gravity. Until about 10 years ago, virtually
nothing was known about black hole statistical mechanics. Today, in contrast, we
suffer an embarrassment of riches: we have many competing microscopic pictures,
describing different states and different dynamics but all predicting the same ther-
modynamic behavior.

In these lectures, I will review what is currently know—and not known—about
black hole thermodynamics and statistical mechanics. This is a large subject, and I
will have to skip many interesting aspects. In particular, I will not discuss stability
analysis, the peculiarities of negative heat capacity, or the complicated question of
black hole phase transitions, and I will only lightly touch upon the profound issues
of information loss and holography.

Even so, my approach will necessarily be sketchy and idiosyncratic, though I will
also try to suggest further references with different emphases and different degrees
of detail. I will aim for a broad overview, rather than focusing on the fine points
of any one particular approach. Some books and review articles that I have found
helpful include [3–7]. In an appendix, I discuss basic black hole properties and
explain my notation.

3.2 Black Hole Thermodynamics

I will begin with two somewhat intuitive routes to black hole thermodynamics. One
of these is based on the second law of thermodynamics, the other on the four laws
of black hole mechanics. Neither route is completely convincing, but together they
provide a good foundation for some of the harder quantitative approaches that I shall
discuss later.

3.2.1 Entropy and the Second Law

Imagine dropping a small box of hot gas into a black hole. The initial state includes
the gas and the black hole; the final state consists solely of a slightly larger black
hole. The initial state certainly has nonzero entropy, in the form of the entropy of
the gas. If the second law of thermodynamics is to hold, the final state must have
nonzero entropy as well: the larger black hole must gain enough entropy to compen-
sate for the entropy lost when the gas disappears behind the horizon.

We can make this argument somewhat more quantitative [8]. Suppose the box
of gas has linear size L, mass m, and temperature T , and that the black hole has
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mass M and horizon radius R = 2GM (and thus horizon area A = 16πG2M2). The
box of gas will merge with the black hole when its proper distance ρ from the
horizon is of order L, at which point the disappearance of the gas will lead to a loss
of entropy

ΔS ∼−m/T.

For a Schwarzschild black hole, the proper distance from the horizon is

ρ =
∫ 2GM+δ r

2GM

dr√
1−2GM/r

∼
√

GMδ r,

so ρ ∼ L when δ r ∼ L2/GM. The gas initially has mass m, but its energy as seen
from infinity is red shifted as the box falls toward the black hole; when the box
reaches r = 2GM +δ r, the black hole will gain a mass

ΔM ∼ m

√
1− 2GM

2GM +δ r
∼ mL

GM
.

If we now suppose that the box must be as large as the thermal wavelength of the
gas, L ∼ h̄/T , we see that

ΔS ∼−mL
h̄

∼−GMΔM
h̄

∼−ΔA
h̄G

.

To preserve the second law of thermodynamics, the black hole must gain an entropy
of at least order ΔA/h̄G.

One can perform a similar analysis for a single particle falling into a Kerr black
hole (assuming the particle contains at least one bit of entropy) [2], a box containing
a simple harmonic oscillator [2], and, using a more sophisticated analysis, a much
more general system falling through a horizon [3, 9–11]. In each case, a “generalized
second law” holds, provided one includes a change of entropy of order ΔA/h̄G for
the black hole. Such reasoning led Bekenstein to suggest in 1972 that a black hole
should itself be attributed an entropy of order A/h̄G [2].

At the time, there seemed to be a compelling argument against such a hypoth-
esis. Classical black holes are, after all, black: when placed in contact with a heat
bath they will absorb energy while emitting none, thus behaving as if they have a
temperature of zero [12]. Two years later, Hawking showed that this problem was
cured by quantum theory. I shall return to this result below, but let us first consider
another classical argument for black hole thermodynamics.

3.2.2 The Four Laws of Black Hole Mechanics

In four spacetime dimensions, a stationary asymptotically flat black hole is uniquely
characterized by its mass M, angular momentum J, and charge Q. (In the presence
of nonabelian gauge fields or certain exotic scalar fields, other kinds of black hole
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“hair” can occur [13], but this does not change the basic argument.) In the early
1970s, a set of relations among neighboring solutions were found, culminating in
Bardeen, Carter, and Hawking’s “four laws of black hole mechanics” [7, 12]. These
take a form strikingly similar to the four laws of thermodynamics:

1. The surface gravity κ is constant over the event horizon.
2. For any two stationary black holes differing only by small variations in the pa-

rameters M, J, and Q,

δM =
κ

8πG
δA+ΩHδJ +ΦHδQ, (3.3)

where ΩH is the angular velocity and ΦH is the electric potential at the horizon.
3. The area of the event horizon of a black hole never decreases,

δA ≥ 0.

4. It is impossible by any procedure to reduce the surface gravity κ to zero in a
finite number of steps.

As in ordinary thermodynamics, there are a number of formulations of the third
law, which are not strictly equivalent; for a proof of the version given here, which is
analogous to the Nernst form of the third law of thermodynamics, see [14]. These
laws can be generalized beyond the particular four-dimensional “electrovac” setting
in which they were first formulated; the first law, in particular, holds for arbitrary
isolated horizons [15], and for much more general gravitational actions, for which
the entropy can be understood as a Noether charge [16].

Bardeen, Carter, and Hawking noted that these laws closely parallel the ordinary
laws of thermodynamics, with the horizon area playing the role of entropy and the
surface gravity playing the role of temperature. But they added, “It should however
be emphasized that κ/8π and A are distinct from the temperature and entropy of the
black hole. In fact the effective temperature of a black hole is absolute zero. In this
sense a black hole can be said to transcend the second law of thermodynamics.”1

3.2.3 Black Holes Radiate

The first suggestion that black holes might emit radiation was made by Zel’dovich
[17], but his argument was qualitative, and applied only to superradiant modes of
rotating black holes. In 1974, though, Hawking demonstrated that all black holes
emit blackbody radiation [1, 18]. The result was startling, and according to Page
[19], Hawking himself did not initially believe it. In hindsight, though, one can give
a somewhat intuitive description of the effect [20].

Such a description has two main ingredients. The first is that the quantum me-
chanical vacuum is filled with virtual particle–antiparticle pairs that fluctuate briefly

1 See [12], p. 168.
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into and out of existence. Energy is conserved, so one member of each pair must
have negative energy. (To avoid a common confusion, note that either the particle
or the antiparticle can be the negative-energy partner.) Normally, negative energy is
forbidden—in a stable quantum field theory, the vacuum must be the lowest energy
state—but energy has a quantum mechanical uncertainty of order h̄/t, so a virtual
pair of energy ±E can exist for a time of order h̄/E. The existence of such virtual
pairs is experimentally well-tested: for example, virtual pairs of charged particles
make the vacuum a polarizable medium, and vacuum polarization is observed in
such phenomena as the Lamb shift and in energy levels of muonic atoms [21].

The second ingredient is the observation that in general relativity, energy—and,
in particular, the sign of energy—can be frame dependent. The easiest way to see
this is to note that the Hamiltonian is the generator of time translations, and thus
depends on one’s choice of a time coordinate. One must therefore be careful about
what one means by positive and negative energy for a virtual pair.

In particular, consider the Schwarzschild metric,

ds2 =
(

1− 2GM
r

)
dt2 −

(
1− 2GM

r

)−1

dr2 − r2dΩ 2. (3.4)

Outside the event horizon, t is the usual time coordinate, measuring the proper time
of an observer at infinity. Inside the horizon, though, components of the metric
change sign, and r becomes a time coordinate, while t becomes a spatial coordinate:
an observer moving forward in time is one moving in the direction of decreasing r,
and not necessarily increasing t.2 Hence an ingoing virtual particle that has nega-
tive energy relative to an external observer may have positive energy relative to an
observer inside the horizon. The uncertainty principle can thus be circumvented: if
the negative-energy member of a virtual pair crosses the horizon, it need no longer
vanish in a time h̄/E, and its positive-energy partner may escape to infinity.

We can again make this argument a bit more quantitative. Consider a virtual pair
momentarily at rest at a coordinate distance δ r from the horizon. As in Sect. 3.2.1,
the proper time for one member of the pair to reach the horizon will be

τ ∼
√

GMδ r.

Setting this equal to the lifetime h̄/E of the pair, we find that

|E| ∼ h̄√
GMδ r

,

which should also be the energy of the escaping positive-energy partner. This is the
energy at 2GM +δ r, though; the energy at infinity will be red shifted to

2 Strictly speaking, the coordinates labeled r and t for r > 2GM are different from those with the
same labels for r < 2GM, since the Schwarzschild coordinate system is only defined in nonover-
lapping patches inside and outside the horizon. But one can rephrase the argument in terms of
proper time of infalling observers in a way that dodges this mathematical subtlety [20].
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E∞ ∼ h̄√
GMδ r

√
1− 2GM

2GM +δ r
∼ h̄

GM
, (3.5)

independent of the initial position δ r. We might thus expect a black hole to ra-
diate with a characteristic temperature kT ∼ h̄/GM. In fact, the precise compu-
tations I shall describe below yield a temperature kTHawking = h̄κ/2π , which for a
Schwarzschild black hole is h̄/8πGM.

Inserting the Hawking temperature (3.1) into the first law of black hole mechan-
ics (3.3), we see that black holes can indeed be viewed as thermal objects, with an
entropy (3.2). This result is fundamentally quantum mechanical—the Hawking tem-
perature depends explicitly on h̄—and in some sense quantum gravitational, since
the Bekenstein–Hawking entropy depends on G as well.

3.2.4 Can Hawking Radiation Be Observed?

I will return to the more precise and detailed derivations of Hawking radiation below.
But let us first address the question of whether this effect can be observed.

For a black hole of mass M, the Hawking temperature (3.5) is

THawking ∼ 6×10−8
(

M�
M

)
K,

some eight orders of magnitude smaller than the cosmic microwave background
temperature for a stellar mass black hole and far smaller for a supermassive black
hole. While there is a chance that we could see Hawking radiation from the final
stages of evaporation of primordial black holes [22, 23], such events are expected to
be rare and difficult to identify.

Another highly speculative possibility for the detection of Hawking radiation
comes from models of TeV-scale gravity. In such models—which typically arise
from “brane world” scenarios in which our four-dimensional universe is a submani-
fold of a higher-dimensional spacetime—gravity may become strong at energies far
below the Planck scale. If this is the case, black holes might be produced copiously
at accelerators such as the LHC, and their quantum properties could be studied in
detail [24, 25].

A third, less direct, route is to look for analogs of Hawking radiation in condensed
matter systems. As Unruh first pointed out [26], one can create a sonic event horizon
in a fluid flow by allowing the flow to become supersonic beyond some boundary.
The same analysis that predicts Hawking radiation from a black hole leads to a pre-
diction of phonon radiation from the sonic horizon of such a “dumb hole.” Similar
phenomena can occur in a variety of condensed matter systems, from Bose–Einstein
condensates to “slow light” to superfluid quasiparticles, and a number of experi-
mental efforts are underway; for reviews, see [27, 28]. It is worth emphasizing that
while such experiments could provide strong evidence for Hawking radiation, which
is essentially a kinematical property, they would not test the Bekenstein–Hawking
entropy, which depends critically on the dynamics of general relativity [29].
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3.2.5 The Many Derivations of Hawking Radiation

In the absence of direct experimental evidence, how confident should we be about
Hawking radiation and black hole thermodynamics? Although Hawking’s deriva-
tion involves only standard quantum field theory, we can see from the arguments
of Sect. 3.2.3 that the radiation involves modes with arbitrarily high energies: while
the asymptotic energies (3.5) may be small, they come from red-shifted quanta with
much higher energies near the horizon. This has led some to suggest that the deriva-
tions might involve an extrapolation of quantum field theory beyond the range it can
be trusted [26, 30, 31].

I will return this issue below, but for now let me suggest a partial answer. If only
one derivation of Hawking radiation existed, we would clearly need to look very
carefully for hidden assumptions and unjustified extrapolations. In fact, though, we
have a rather large number of different derivations, which involve very different as-
sumptions and extrapolations and nevertheless all agree. Some of these derivations
look at eternal black holes, others at black holes formed from collapse; some involve
explicit, detailed computations in particular field theories, others use general prop-
erties of axiomatic quantum field theory; some involve Planck-scale fluctuations,
others cut off energies well below the Planck scale; some some predict only the
Hawking temperature, others also allow a computation of the Bekenstein–Hawking
entropy. While it is still possible that these derivations all share a common flawed
assumption, it seems unlikely that so many methods would converge on the same
answer if that answer were wrong. None of this vitiates the need for observational
tests—after all, the entire general relativistic description of black holes could be
wrong—but it suggests that a failure of black hole thermodynamics would have to
be either very subtle or very radical.

I will describe some of these derivations below. Given the nature of these lec-
tures, I will not attempt a full description of any one method; my aim is to give a
broad overview, with references that will allow the reader to delve into individual
approaches in more detail.

3.2.5.1 Bogoliubov Transformations and Inequivalent Vacua

As noted above, a crucial ingredient in understanding Hawking radiation is the fact
that energy—and, in particular, “positive” and “negative” energy—is frame depen-
dent. Consider, for simplicity, a free real scalar field ϕ . Recall that in ordinary quan-
tum field theory in flat spacetime, we quantize ϕ by first decomposing the field into
Fourier modes,

ϕ =∑
k

(
akuk(t,x)+a†

ku∗k(t,x)
)

with uk = eik·x−iωkt , ω k

=
(
|k|2 +m2)1/2

, (3.6)
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and then interpret the ak as annihilation operators and the a†
k as creation operators.

The Fourier modes uk can be understood as a set of orthonormal functions satisfying

(�+m2)uk(t,x) = 0, ∂tuk(t,x) = −iωkuk(t,x), (3.7)

where the second condition determines what we mean by positive and negative fre-
quency, and thus allows us to distinguish creation and annihilation operators. The
vacuum is then defined as the state annihilated by all the ak,

ak|0〉 = 0.

In a curved spacetime, or a noninertial coordinate system in flat spacetime, stan-
dard Fourier modes are no longer available. With a choice of time coordinate t,
though, one can still find modes of the form (3.7) and perform a decomposition
(3.6) to obtain creation and annihilation operators. Given two different reference
frames with time coordinates t and t̄, two such decompositions exist:

ϕ =∑
i

(
aiui +a†

i u∗i
)

=∑
i

(
āiūi + ā†

i ū∗i
)

, (3.8)

and since the (ui,u∗i ) are a complete set of functions, we can write

ū j =∑
i

(α jiui +β jiu
∗
i ) . (3.9)

This relation is known as a Bogoliubov transformation, and the coefficients α ji and
β ji are Bogoliubov coefficients [32].

We now have two vacuum states, one annihilated by the ai and one by the āi,
and two number operators Ni = a†

i ai and N̄i = ā†
i āi. Using the orthonormality of the

mode functions, it is straightforward to show that

〈0̄|Ni|0̄〉 =∑
j
|β ji|2. (3.10)

Thus if the coefficients β ji are not all zero, the “barred” vacuum will have a nonva-
nishing “unbarred” particle content.

In [1] and [18], Hawking considered a mass collapsing to form a black hole,
and computed the Bogoliubov coefficients connecting an initial vacuum far outside
the collapsing matter to a final vacuum after the black hole formed. He found that
the “barred” observer at future null infinity will observe a thermal distribution of
particles, with a temperature (3.1).3 I will not go into details here; three very nice
reviews can be found in [4, 29, 33]. The essential physical feature is that ingoing
vacuum modes “pile up” at the horizon, giving an exponential relationship between
ingoing and outgoing surfaces of constant phase; the integrals that determine the
Bogoliubov coefficients β ji take the form

3 The final distribution is actually not quite thermal, but contains a “graybody factor” that reflects
the backscattering of some of the emitted radiation into the black hole.
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∫
dveiωve−iωκ lnv,

yielding gamma functions of complex arguments whose absolute squares give the
exponential behavior of a thermal distribution.

Hawking’s derivation was based on a particular choice of vacuum state, but gen-
eralizations are possible. For example, one may compare the vacuum of a freely
falling observer near the horizon to the vacuum of an observer at future null infin-
ity [34]. One can also look beyond the expectation value of the number operator,
and express the full final state in terms of initial modes; one finds that it is exactly
thermal [35, 36]. Generalizations to spinor and gauge fields are straightforward, and
yield the correct fermionic and bosonic distribution functions.

It is also possible to simplify the problem, by looking at the easier model of an
accelerated observer in flat spacetime. Such an observer is naturally described in
Rindler coordinates [37]

ds2 = e2aξ (
dη2 −dξ 2) ,

in which the exponential relationship between the unaccelerated and the accelerated
modes is easy to verify. A straightforward calculation of Bogoliubov coefficients
shows that the accelerated observer will see a thermal bath of “Unruh radiation” with
a temperature kT = h̄a/2π , where a is proper acceleration [34]. By the principle of
equivalence, an observer at rest near the horizon of a black hole should experience
the same effect, with the acceleration a replaced by the appropriately blue shifted
surface gravity κ , the acceleration necessary to hold the observer at rest.

As I noted in the preceding section, the exponential relationship between “barred”
and “unbarred” modes may be a cause of concern. The modes observed as Hawking
radiation by an observer far from the black hole are red shifted from Planck-scale
modes near the horizon, and it seems that one has extrapolated quantum field theory
far beyond the range in which it is known to be valid. To address this question, a
number of authors have looked at the effect of modifying the dispersion relations
in a way that removes very high-energy modes (see, for example, [26, 38–40]). For
example [41], one can replace the standard expression for the energy of a massless
field, ωk = |k|, with

ω2
k = |k|2 − |k|4

k0
2 ,

eliminating modes with trans-Planckian energies. Both numerical and analytical
computations show that despite these drastic changes in the high-frequency behav-
ior, thermal Hawking radiation persists. We now have strong evidence that a few
simple assumptions—a vacuum near the horizon as seen in a freely falling frame,
fluctuations that start in the ground state, and adiabatic evolution of the modes—are
sufficient to guarantee thermal radiation [42].
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3.2.5.2 Particle Detectors in a Black Hole Background

The definitions of vacuum and particle number in the preceding section were taken
from ordinary quantum field theory. But finding observables in quantum gravity is
notoriously difficult, and one might worry about the applicability of these definitions
in a highly curved spacetime. To address this issue, Unruh [34] and DeWitt [43] con-
sidered the response of a particle detector in a black hole background and showed
that such a detector sees thermal radiation at the Hawking temperature. Similarly,
a static atom outside a black hole will be excited as one would expect in a thermal
bath [44].

3.2.5.3 The Stress–Energy Tensor

One can obtain further invariant information about black hole radiation by evaluat-
ing the expectation value of the stress–energy tensor of a quantum field in a black
hole background. This is a large subject; good introductions can be found in the
books [6] and [45]. For these lectures, the most relevant result is that an ingoing
negative energy flux at the horizon balances the outgoing flux of Hawking radiation
observed at infinity, leading to a back-reaction in which the black hole’s mass de-
creases (as expected from the intuitive argument of Sect. 3.2.3) and ensuring energy
conservation.

The computation of 〈Tμν〉 in a black hole background is generally very difficult
(see, for example, [46] or Chap. 11 of [6]). In the special case of a massless scalar
field—or more generally, a conformally invariant field—in two dimensions, the cal-
culation drastically simplifies [47]. The key difference is that in two dimensions,
conservation of the stress–energy tensor is sufficient to determine the full expecta-
tion value in terms of the trace anomaly 〈T μ

μ〉, which, in turn, depends only on
characteristics of the field in a flat background. The resulting expectation values are
thermal, and the total flux can be used to determine the temperature, which matches
the Hawking temperature (3.1).

Quite recently, Robinson and Wilczek have shown how to extend this result to
more than two dimensions, by dimensionally reducing an arbitrary field to two di-
mensions (or equivalently looking at a partial wave expansion) and trading the trace
anomaly for a chiral anomaly [48]. Their method, with some variations (for exam-
ple, [49]), has been quickly extended to a wide variety of black holes. In a beautiful
piece of work, Iso, Morita, and Umetsu have further shown that by looking at higher-
order correlators, one can use similar techniques to obtain not just the total flux, but
the full blackbody spectrum of Hawking radiation [50, 51].

3.2.5.4 Tunneling Through the Horizon

For many physical systems, we know that classically forbidden processes can occur
through quantum tunneling. This is the case for Hawking radiation. The idea of a
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tunneling description dates back to at least 1975 [52], but the nicest form is more
recent, coming from Parikh and Wilczek’s insight that one can think of the horizon
tunneling past the emitted radiation rather than vice versa [53–55].

Consider a spherically symmetric system of mass M consisting of a Schwarzschild
black hole of mass M−ω emitting a shell of radiation of mass ω� M. In Painlevé–
Gullstrand coordinates, chosen because they are stationary and nonsingular at the
horizon, the shell moves in a spacetime with metric

ds2 =
(

1− 2G(M−ω)
r

)
dt2 −2

√
2G(M−ω)

r
dt dr−dr2 − r2dΩ 2,

and outgoing radial null geodesics satisfy

ṙ = 1−
√

2G(M−ω)
r

.

Now consider the imaginary part of the action for an outgoing positive energy
shell—to be interpreted as an s-wave particle—crossing the horizon from rin to rout:

ImI = Im
∫ rout

rin

prdr = Im
∫ rout

rin

∫ pr

0
d p′r dr = Im

∫ M−ω

M

∫ rout

rin

dr
ṙ

dH, (3.11)

where I have used Hamilton’s equations of motion to write d pr = dH/ṙ and noted
that the horizon moves inward from GM to G(M −ω) as the particle is emitted.
Setting H = M −ω and inserting the value of ṙ obtained from the null geodesic
equation, one can perform the integral easily through a contour deformation, ob-
taining

ImI = 4πωG
(

M− ω
2

)
(3.12)

with rin > rout. Again, the physical picture is that the horizon tunnels inward as the
black hole’s mass decreases.

By standard quantum mechanics, the tunneling rate in the WKB approximation
is then

Γ = e−2 ImI/h̄ = e−8πωG(M−ω
2 )/h̄ = eΔSBH (3.13)

where ΔSBH is the change in the Bekenstein–Hawking entropy (3.2). By the first law
of black hole mechanics, this is h̄ω/TH , and we recover thermal Hawking radiation.

The tunneling derivation may be easily extended to other classes of black holes,
and consistently reproduces the standard results. Its relationship to Hawking’s orig-
inal derivation is not obvious, but Parikh and Wilczek note that the same analysis
can describe a negative-energy particle tunneling into the black hole, thus offering
a similar physical picture.
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3.2.5.5 Periodic Greens Functions

Consider the two-point function of a scalar field ϕ in a thermal ensemble of inverse
temperature β :

Gβ (x,0;x′, t) = Tr
(

e−βHϕ(x,0)ϕ(x′, t)
)

= Tr
(
ϕ(x,0)e−βHeβHϕ(x′, t)e−βH

)

= Tr
(
ϕ(x,0)e−βHϕ(x′, t + iβ )

)
= Gβ (x′, t + iβ ;x,0), (3.14)

where I have used cyclicity of the trace and the fact that the Hamiltonian generates
time translations, so eβHϕ(x′, t)e−βH = ϕ(x′, t + iβ ). In particular, (3.14) implies
that if a thermal Greens function is symmetric in its arguments, it must be periodic
in time with period iβ . This argument may be run backwards, and such periodicity
in imaginary time may be taken as the definition of a thermal Greens function; in
axiomatic quantum field theory, this is formalized as the KMS condition [56–58].

As early as 1976, Bisognano and Wichmann showed that the Greens function for
a uniformly accelerated observer obeys the KMS condition [59]. By the equivalence
principle, the same should hold for an observer at rest near the horizon of a black
hole. This is indeed the case, as shown by Gibbons and Perry [60, 61], who fur-
ther demonstrated that the periodicity corresponds exactly to the expected Hawking
temperature (3.1).

3.2.5.6 Gravitational Instantons

The periodicity of Greens functions described above suggests that it might be worth-
while to consider the analytic continuation of black hole spacetimes to “imaginary
time.” Near the horizon r = r+, a stationary black hole metric takes the approximate
form

ds2 = 2κ(r− r+)dt2 − 1
2κ(r− r+)

dr2 − r2
+dΩ 2.

Continuing to imaginary time t = iτ and replacing r by the proper distance

ρ =
1
κ

√
2κ(r− r+)

to the horizon, we obtain the “Euclidean black hole” metric

ds2 = dρ2 +κ2ρ2dτ2 + r2
+dΩ 2. (3.15)

The ρ–τ portion of this metric may be recognized as that of a flat two-plane
in polar coordinates, with imaginary time τ serving as the angular coordinate. The
horizon ρ = 0 has shrunk to a point. To avoid a conical singularity at the origin, we
must require that κτ have period 2π , i.e., that τ have period 2π/κ = 1/kTHawking.
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This result provides a simple way to understand the periodicity of the Lorentzian
Greens functions in imaginary time. But it does more: it allows a steepest descent
(“instanton”) approximation to the gravitational path integral and a semiclassical
derivation of the Bekenstein–Hawking entropy [62]. The key ingredient is the ob-
servation that on a manifold with boundary, the ordinary Einstein–Hilbert action
must be supplemented by a boundary term, without which it may have no ex-
trema [62, 63]. At an extremum, the “bulk” contribution to the action,

1
16πG

∫
d4x

√
|g|R,

vanishes, but the boundary term can give a nonzero contribution. In the original
work in this field, the boundary term was taken at infinity [62, 64], but it may more
intuitively be placed at the origin of the Euclidean black hole, that is, at the hori-
zon [65–67]. This boundary term may be evaluated in a number of ways—a partic-
ularly elegant approach involves dimensional reduction to a disk in the ρ–τ plane
[65]—and yields an extremal action

ĪEuc =
Ahorizon

4h̄G
−β (M +ΩJ +ΦQ). (3.16)

This Euclidean saddle point contributes eĪEuc to the partition function, and from
(3.16), we can recognize the result as the grand canonical partition function for a
system with entropy SBH = Ahorizon/4h̄G.

These results can be extended to much more general stationary configurations
containing horizons [68]. The essential ingredient is a Killing vector with zeros,
which become boundaries upon continuation to Euclidean signature. One can also
obtain an equivalent result by canonically quantizing the system while including
the boundary terms; the boundary term at the horizon gives rise to a new term in
the Wheeler–DeWitt equation, from which one can again recover the Bekenstein–
Hawking entropy [69].

3.2.5.7 Black Hole Pair Creation

A further path integral derivation of black hole entropy comes from studying the
spontaneous pair creation rate for black holes in a background magnetic field [70],
electric field [71], de Sitter space [72], or more complicated combinations of ex-
ternal fields [73]. One consistently finds that the production rate is enhanced by a
factor of eSBH, exactly the phase space factor one would expect for a system in which
the Bekenstein–Hawking entropy gives the logarithm of the number of states.
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3.2.5.8 Quantum Field Theory and the Eternal Black Hole

Yet another derivation of Hawking radiation comes from considering quantum field
theory on an eternal black hole background. Recall that in Kruskal coordinates, a
black hole spacetime splits into four regions, as shown in Fig. 3.1. Consider a state

II I
Σ

Fig. 3.1 A Carter-Penrose diagram for an eternal black hole

defined on a Cauchy surface Σ that passes through the bifurcation sphere. Region II
is invisible to an observer living in region I, so such an observer should trace over the
degrees of freedom in that region. Even if the initial state is pure, such a trace will
lead to a density matrix describing the physics in region I. This makes it plausible
that the region I observer will see thermal behavior, and detailed calculations show
that this is indeed the case (Fig. 3.1).

In particular, for a free quantum field there is at most one quantum state, the
Hartle–Hawking vacuum state, that is regular everywhere on the horizon [5, 74]. For
a scalar field, a direct computation shows that the density matrix obtained by tracing
over region II is thermal, with a temperature THawking [75]. For more general fields,
the same can be shown by means of fairly sophisticated quantum field theory [5, 74]
or by general path integral arguments [76].

3.2.5.9 Quantum Gravity in 2+1 Dimensions

Most standard derivations of black hole thermodynamics hold in an arbitrary num-
ber of dimensions, with changes only in the graybody factors for Hawking radiation.
In three spacetime dimensions, though, many approaches become much simpler.
The BTZ solution [77, 78] is a vacuum solution of the Einstein field equations in 2+1
dimensions with a negative cosmological constant. It has all the standard features of
a rotating black hole—an event horizon, an inner Cauchy horizon, the same causal
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structure as that of a (3+1)-dimensional asymptotically anti-de Sitter black hole—
but is, at the same time, a space of constant negative curvature. This latter feature
greatly simplifies many derivations: for example, Greens functions can be computed
exactly and their periodicity in imaginary time exhibited explicitly (see [78] for a
review). As was first suggested in [79], it might even be possible to use the relation-
ship between three-dimensional general relativity and two-dimensional conformal
field theory [80] to find an exact description of the quantum states of the BTZ black
hole; the present status of this conjecture is discussed in [81].

The simplicity of the (2+1)-dimensional setting also permits an approach that
is not readily available in higher dimensions. The methods I have described so far
are based on properties of quantum fields in a classical, or at best semiclassical,
black hole background. In three dimensions, one can work in the opposite direction,
starting with a quantum black hole coupled to a classical source. As I shall discuss
further in Sect. 3.4.3, three-dimensional gravity with a negative cosmological con-
stant is closely related to a two-dimensional field theory living at the “boundary” of
asymptotically anti-de Sitter space. Emparan and Sachs have shown how to couple
this two-dimensional field theory to a classical scalar field, allowing the computa-
tion of transition rates among black hole states due to emission and absorption of
the classical field [82]. By using detailed balance arguments, they recover standard
Hawking radiation, including the correct graybody factors, from this fundamentally
quantum gravitational picture.

3.2.5.10 Other Microscopic Approaches

The derivations I have described so far are essentially “thermodynamic,” based on
macroscopic properties of black holes. As I shall discuss in the following sections,
we now also have a large number of “statistical mechanical” derivations, based on
analyses of the microscopic states of the black hole. These microscopic approaches
are not complete—string theory derivations, for example, are most reliable for ex-
tremal and near-extremal black holes, while loop quantum gravity derivations con-
tain an order one parameter that, so far, must be adjusted by hand—but they seem
to work well within their ranges of validity. When combined with the macroscopic
approaches above, they provide strong evidence for the reality of black hole ther-
modynamics.

3.3 Black Hole Statistical Mechanics

In ordinary thermodynamic systems, thermal properties are macroscopic reflections
of the underlying microscopic physics. Temperature is a measure of the average
energy of the constituents of a system, for instance, while entropy is essentially
the logarithm of the number of states with specified macroscopic properties. The
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connection between the microscopic and the macroscopic properties, given by sta-
tistical mechanics, has been remarkably successful across physics.

Given the thermodynamic properties of black holes, it is natural to ask whether
these, too, have a statistical mechanical interpretation. Such an explanation would
almost certainly involve quantum gravity—the Bekenstein–Hawking entropy (3.2)
involves both Planck’s constant h̄ and Newton’s constant G—and we might hope to
learn something about the deep mysteries of quantum gravity.

To find such a statistical mechanical description, one should, in principle, carry
out a number of steps:

1. Find a candidate quantum theory of gravity (not an easy task)
2. Identify black holes in the theory (also not easy)
3. Identify observables such as horizon area (surprisingly hard—finding physical

observables in a quantum theory of gravity is notoriously difficult [83])
4. Count the microstates for a black hole configuration (perhaps easier, but still not

trivial)
5. Compare to the Bekenstein–Hawking entropy (perhaps relatively easy)
6. Compute interactions with external fields, evaluate Hawking radiation, etc. (not

at all easy)
7. Try to identify new quantum gravitational effects (the horizon area spectrum?

evaporation remnants? higher order corrections to the Bekenstein–Hawking en-
tropy? correlations across the horizon?).

Until recently, these steps seemed far beyond reach. In 1996, though, Strominger
and Vafa published a remarkable paper in which they explicitly computed the en-
tropy of a class of extremal black holes in string theory from the microscopic quan-
tum theory [84]. Since then, a flood of new microscopic derivations of black hole
thermodynamics has appeared. The new puzzle—the “problem of universality”—is
that although these derivations seem to be using very different methods to count
very different states, they all obtain the same thermodynamic properties.

3.3.1 The Many Faces of Black Hole Statistical Mechanics

In this section, I will briefly review some of the statistical mechanical approaches
to black hole thermodynamics, and in particular the Bekenstein–Hawking entropy.
As in Sect. 3.2.5, I will not go into detail, but will instead try to provide an overall
flavor of the work, along with references for further study.

3.3.1.1 String Theory: Weakly Coupled Strings and Branes

The first breakthrough in the counting of black hole microstates came with the work
of Strominger and Vafa on extremal black holes in string theory [84]. Their approach
can be summarized as follows.
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The effective low-energy field theory coming from string theory contains a num-
ber of gauge fields, each of which can give a charge to a black hole. An extremal
supersymmetric (BPS) black hole is uniquely characterized by its charges; in partic-
ular, its horizon area can be expressed in terms of these charges. Given such a black
hole, one can imagine tuning down the couplings, weakening gravity until the black
hole “dissolves” into a gas of weakly coupled strings and branes. In this weakly
coupled system, the charges can be expressed in terms of the number of strings and
branes and the quantized momentum carried by strings. Furthermore, the states—
the excitations of the string–brane system—can be explicitly counted [85]. We can
therefore write the number of states in terms of the numbers of strings and branes,
and thus the charges. Comparing this number to the horizon area, we recover the
standard Bekenstein–Hawking entropy as the logarithm of the number of states.

One might worry that the number of states might not be the same in the weakly
coupled system as in the strongly coupled black hole. For the supersymmetric case,
though, this number is protected by nonrenormalization theorems. For black holes
far from extremality, on the other hand, the computations are much more difficult;
there are qualitative arguments that give an entropy proportional to the horizon area,
but the exact proportionality factor of 1/4 is difficult to obtain [86, 87].

It was quickly realized that the Strominger–Vafa results could be extended to a
wide variety of extremal and near-extremal black holes, and through duality rela-
tions to a number of nonextremal black holes as well. Nice reviews can be found
in [88] and [89]; for recent progress on the four-dimensional Kerr black hole,
see [90].

This string theory approach has been remarkably successful, determining not
only the Bekenstein–Hawking entropy for extremal and near-extremal black holes
but also describing their interactions with other fields and their emission of Hawking
radiation. The method has one peculiarity, though, to which I will return below.
Suppose you ask me for the entropy of a three-charge black hole in five dimensions. I
will compute the horizon area in the strongly coupled theory in terms of the charges,
compute the number of states in the weakly coupled theory in terms of the charges,
compare the two, and reply that the entropy is one-fourth of the horizon area. If
you now ask me for the entropy of a four-charge black hole, or a black hole in
six dimension, I cannot simply tell you that it is one-fourth of the horizon area;
I must recompute the horizon area and the number of states in terms of the new
parameters and compare the answers again. Each new black hole requires a new
calculation: the theory tells us that the number of microstates of a black hole matches
the Bekenstein–Hawking entropy (3.2), but it tells us so one black hole at a time.

3.3.1.2 String Theory: “Fuzzballs”

One can run the argument in the preceding section backward: given a particular ex-
citation of the weakly coupled string and brane system, one can ask exactly what
geometry results at strong coupling. The result is a “fuzzball” picture, in which par-
ticular black hole states correspond to complicated geometries that have no horizon
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or singularity, but that look very much like black hole geometries outside the would-
be horizon [91, 92]. In special cases, one can count the number of such “fuzzball”
geometries and reproduce the Bekenstein–Hawking entropy, and it seems likely that
this result can be extended to more general black holes, although it is an open
question whether simple geometric descriptions will always suffice [93]. Samir
Mathur has discussed this approach extensively in his lectures, to which I refer the
reader [85].

3.3.1.3 String Theory: The AdS/CFT Correspondence

Yet another string theory approach to black hole statistical mechanics is based
on Maldacena’s celebrated AdS/CFT correspondence [94–96]. This very well-
supported conjecture asserts a duality between string theory in d-dimensional
asymptotically anti-de Sitter spacetime and a conformal field theory in a flat (d−1)-
dimensional space that can, in a sense, be viewed as the boundary of the AdS space-
time. This correspondence is naturally “holographic” (see Sect. 3.5.2), describing
the black hole in terms of a lower-dimensional theory and thus offering a frame-
work for understanding the dependence of entropy on area rather than volume.

For asymptotically anti-de Sitter black holes, this correspondence makes it pos-
sible to compute entropy by counting states in a (nongravitational) dual conformal
field theory. The simplest case is the (2+1)-dimensional BTZ black hole discussed in
Sect. 3.2.5, whose dual is a two-dimensional conformal field theory. As I shall dis-
cuss in Sect. 3.4.1, the density of states in such a theory has an asymptotic behavior
controlled by a single parameter, the central charge c. For asymptotically anti-de
Sitter gravity in 2+1 dimensions, this central charge is dominated by a classical
contribution, which was discovered some time ago by Brown and Henneaux [97].
Strominger [98] and Birmingham et al. [99] independently realized that this result
could be used to compute the BTZ black hole entropy, reproducing the Bekenstein–
Hawking expression.

While this result applies directly only to the special case of three-dimensional
spacetime, it has an important generalization. Many of the higher dimensional near-
extremal black holes of string theory—including black holes that are not themselves
asymptotically anti-de Sitter—have a near-horizon geometry of the general form
BTZ × trivial, where the “trivial” part merely renormalizes constants in the calcula-
tion of entropy. As a consequence, the BTZ results can be used to find the entropy of
a large class of stringy black holes, including most of the black holes whose states
can be counted in the weak coupling approach of Sect. 3.3.1 [100].

3.3.1.4 Loop Quantum Gravity

In the quest for quantum gravity, the leading alternative to string theory is loop
quantum gravity [101]. The fundamental “position” variable in this theory is a three-
dimensional SU(2) connection; a state is a complex-valued function of (generalized)
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connections. A useful basis of states consists of spin networks, graphs with edges
labeled by SU(2) representations (“spins”) and vertices labeled by intertwiners. A
spin network state can be evaluated on a given connection to give a complex number
by computing the holonomies along the edges in the specified representations and
combining them with the intertwiners at the vertices.

Given a surface Σ , one can define an area operator ÂΣ that acts on loop quan-
tum gravity states. It may be shown that spin networks are eigenfunctions of these
operators, with eigenvalues of the form

AΣ = 8πγG∑
j

√
j( j +1),

where the sum is over the spins j of edges of the spin network that cross Σ . The
parameter γ , the Barbero–Immirzi parameter, represents a quantization ambiguity,
and its physical significance is poorly understood; theories with different values of
γ may be inequivalent, but it has been suggested that γ may not appear in properly
renormalized observables [102] or in a slightly different approach to quantization
[103].

Given this structure, a natural first attempt to count black hole states is to enumer-
ate inequivalent spin networks crossing the horizon that yield a specified area [104,
105]. The more careful variation of this idea [106, 107] takes into account the fact
that when one restricts to a black hole spacetime, one must place “boundary condi-
tions” on the horizon to ensure that it is, in fact, a horizon. These conditions, in turn,
require the addition of boundary terms to the Einstein–Hilbert action, which induce
a three-dimensional Chern–Simons action on the horizon. The number of states of
this Chern–Simons theory is closely related to the number of spin networks that
induce the correct horizon area, but with slightly more subtle combinatorics. The
ultimate result is that the black hole entropy takes the form [108, 109]

S =
γM

γ
Ahorizon

4h̄G
, (3.17)

where γ is the Barbero–Immirzi parameter and

γM ≈ .23753

is a numerical constant determined as the solution of a particular combinatoric prob-
lem. If one chooses γ = γM , one thus recovers the standard Bekenstein–Hawking
entropy.

The physical significance of this rather peculiar value of the Barbero–Immirzi
parameter is not understood, and it may reflect an inadequacy in the quantization
procedure or the definition of the area operator [103]. Note, though, that γ only
appears in the combination Gγ , so this choice may be viewed as a finite renormal-
ization of Newton’s constant. If the same shift occurs in the attraction between two
masses, its interpretation becomes straightforward. Unfortunately, the Newtonian
limit of loop quantum gravity is not yet well enough understood to see whether this
is the case.
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In any case, though, once γ is fixed for one type of black hole—the static
Schwarzschild solution, say—the loop quantum gravity computations give the cor-
rect entropy for a wide variety of others, including charged black holes, rotating
black holes, black holes with dilaton couplings, black holes with higher genus hori-
zons, and black holes with arbitrarily distorted horizons [110, 111]. In particular,
there is no need to restrict oneself to near-extremal black holes. Hawking radiation,
on the other hand, is not yet very well understood in this approach, although there
has been some progress [112, 113].

An alternate approach to black hole entropy also exists within the framework
of loop quantum gravity [114]. Here, one again looks at a horizon area determined
by edges of a spin network, but instead of counting states in an induced boundary
theory, one merely asks the number of ways the spins can be joined to a single
interior vertex. This amounts, in essence, to completely coarse graining the interior
state of the black hole and is comparable in spirit to the thermodynamic derivation of
Sect. 3.2.5. One again obtains an entropy proportional to the horizon area, although
with a different value of the Barbero–Immirzi parameter.

3.3.1.5 Induced Gravity

In 1967, Sakharov suggested that the Einstein–Hilbert action for gravity might not
be fundamental [115]. If one starts with a theory of fields propagating in a curved
spacetime, counterterms from renormalization will automatically induce a gravita-
tional action, which will almost always include an Einstein–Hilbert term at lowest
order [116, 117]. Gravitational dynamics would then be, in Sakharov’s terms, a sort
of “metric elasticity” induced by quantum fluctuations.

One can write down an explicit set of “heavy” fields that can be integrated out in
the path integral to induce the Einstein–Hilbert action. By including nonminimally
coupled scalar fields, one can obtain finite values of Newton’s constant and the cos-
mological constant. It is then possible to go back and count states of the heavy fields
in a black hole background [118]. The nonminimal couplings lead to some subtleties
in the definition of entropy, but in the end the computation reproduces the standard
Bekenstein–Hawking value. Furthermore, the reduction to a two-dimensional con-
formally invariant system near the horizon, in the spirit of the thermodynamic ap-
proach of Sect. 3.2.5, allows a counting of states by standard methods of conformal
field theory [119]. We thus obtain a new, and apparently quite different, view of the
microstates of a black hole as those of the ordinary quantum fields responsible for
inducing the gravitational action.

3.3.1.6 Entanglement Entropy

As discussed in Sect. 3.2.5, one way to obtain the thermodynamic properties of a
black hole is to trace out the degrees of freedom behind the horizon, generating a
density matrix for the external observer from a globally pure state. This process also
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produces a quantum mechanical “entanglement entropy,” which can be thought of as
a measure of the loss of information about correlations across the horizon. The sug-
gestion that this entanglement entropy might account for the Bekenstein–Hawking
entropy is an old one [120, 121], and it is not hard to show that for many (although
not all [122]) states, the entanglement entropy is proportional to the horizon area:
the main contribution comes from correlations among degrees of freedom very close
to the horizon and does not involve “bulk” degrees of freedom. The coefficient of
this entropy, on the other hand, is infinite, and must be cut off [123], leading to an
expression that depends strongly on both the nongravitational content of the theory
(the number and species of “entangled” fields contributing to the entropy) and the
value of the cutoff.

The same modes that cause the entanglement entropy to diverge also give di-
vergent contributions to the renormalization of Newton’s constant, and it has been
suggested that the two divergences may compensate [124]. This notion has recently
gained new life with a proposal by Ryu and Takayanagi for a “holographic” descrip-
tion of entanglement entropy [125, 126], in which the d-dimensional spacetime con-
taining a black hole is embedded at the asymptotic boundary of (d +1)-dimensional
anti-de Sitter space. The idea is inspired by the string theory AdS/CFT correspon-
dence and can be largely proven to work in situations in which such a correspon-
dence exists [127]; the bulk anti-de Sitter metric provides a natural cutoff, yielding
finite contributions to both S and G. When applied to a black hole, the proposal cor-
rectly reproduces the standard Bekenstein–Hawking entropy [128], providing yet
another physical picture of the relevant microstates.

3.3.1.7 Other Approaches

A variety of other microscopic descriptions of black hole thermodynamics have
also been proposed. In the causal set formulation of quantum gravity—in which a
continuous spacetime is replaced by a discrete set of points with prescribed causal
relations—there is evidence that the Bekenstein–Hawking entropy is given by the
number of points in the future domain of dependence of a spatial cross-section of
the horizon [129]. York has estimated the entropy obtained by quantizing the quasi-
normal modes [130] of the Schwarzschild black hole, finding a result that lies within
a few percent of the Bekenstein–Hawking value [131]. Black hole entropy can be
related to the Kolmogorov-Sinai entropy of a string spreading out on the black hole
horizon [132]. A number of mini- and midisuperspace models—models in which
most of the degrees of freedom of the gravitational field are frozen out—have also
been proposed to explain black hole statistical mechanics [133–135], though none
is yet very convincing.

One can also build “phenomenological” models of black hole microstates, in
which the horizon area is simply assumed to be quantized [136–139]. Such models
do not, of course, tell us why area is quantized, and thus do not address the funda-
mental physical questions of black hole statistical mechanics, but they can suggest
useful directions for further research.
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Suppose, for example, that the black hole area spectrum is discrete and equally
spaced and that the exponential of the entropy (3.2) gives an exact count of the
number of states at a given horizon area. Then the difference between two adjacent
values must be an integer; that is,

ΔA = 4h̄G lnk (3.18)

for some integer k. Hod has pointed out [140] that for the Schwarzschild black hole,
the most highly damped quasinormal modes [130]—the damped “ringing modes”
of an excited black hole—have frequencies whose real part approaches

Reω = ln3/8πGM

(a numerical result later verified analytically [141]). If one applies the Bohr corre-
spondence principle and argues that area eigenstates of the black hole should change
by emission of quanta of energy h̄ω , one obtains

ΔA = 32πG2MΔM = 4h̄G ln3,

matching (3.18) with k = 3. It is not yet clear whether this result has deep signifi-
cance. It seems to extend to general single-horizon black holes [142] and in a more
complicated way to many “stringy” black holes [143], but results for charged and
rotating black holes are unclear (for an optimistic view, see [144]).

One can also describe the Bekenstein-Hawking entropy as a count of the number
of distinct ways that a black hole with specified macroscopic properties can be made
from collapsing matter [10]. Like the phenomenological models of area quantiza-
tion, this result does not really describe the microscopic degrees of freedom of the
black hole itself (except perhaps in the “membrane paradigm” [145]), but it strongly
suggests that if the formation of a black hole is a unitary process, such degrees of
freedom must exist.

3.4 The Problem of Universality

One of the main lessons of the preceding section is that a great many different mod-
els of black hole microphysics yield the same thermodynamic properties. Some of
these models are clearly ad hoc, but others are carefully worked out consequences
of serious approaches to quantum gravity. So the new question is why everyone is
getting the same answer.

To some extent, this “problem of universality” is a selection issue: there are un-
doubtedly computations that gave the “wrong” answer for black hole entropy and
were discarded without being published. But as noted in Sect. 3.3.1, even within
a particular well-motivated and successful string theory model we do not yet un-
derstand the universality of the entropy–area relationship. And regardless of what
one may think about any one particular approach, one must still explain why any



3 Black Hole Thermodynamics and Statistical Mechanics 111

microscopic model reproduces the results of Hawking’s original thermodynamic
computation, a computation that seems to require no information about quantum
gravity at all.

There are other situations, of course, in which thermodynamic properties do
not depend too delicately on an underlying quantum theory. For example, for a
large range of parameters the entropy of a box of gas depends only very weakly
on whether the molecules are fermions or bosons. But in cases like this, we have
a classical microscopic description, and the correspondence principle guarantees
that the quantum theory will give a good approximation for the classical results.
For a black hole, things are different: the only classical description we have is
one in which black holes have no hair—no phase space volume—and thus no
entropy. We need something new, some new principle that determines the quan-
tum mechanical density of states in terms of the classical characteristics of a
black hole.

I do not know the ultimate explanation for this universal behavior, but in the
remainder of this section, I will make a tentative suggestion and offer some evidence
that it may be correct.

3.4.1 The Cardy formula

I only know of one well-understood case in which universality of the sort we see
in black hole statistical mechanics appears elsewhere in physics. Consider a two-
dimensional conformal field theory, that is, a theory in two spacetime dimensions
that is invariant under diffeomorphisms (“generally covariant”) and Weyl transfor-
mations (“locally scale invariant”). If we choose complex coordinates z and z̄, the
basic symmetries of such a theory are the holomorphic and antiholomorphic diffeo-
morphisms z→ f (z), z̄→ f̄ (z̄). These are canonically generated by “Virasoro gener-
ators” L[ξ ] and L̄[ξ̄ ] [146]. Such a theory has two conserved charges, L0 = L[ξ0] and
L̄0 = L̄[ξ̄0], which can be thought of as “energies” with respect to constant holomor-
phic and antiholomorphic transformations, or alternatively as linear combinations
of energy and angular momentum.

As generators of diffeomorphisms, the Virasoro generators have an algebra that
is almost unique [147]:

{L[ξ ],L[η ]} = L[ηξ ′ −ξη ′]+
c

48π

∫
dz

(
η ′ξ ′′ −ξ ′η ′′)

{L[ξ ], L̄[η̄ ]} = 0 (3.19)
{

L̄[ξ̄ ], L̄[η̄ ]
}

= L̄[η̄ ξ̄ ′ − ξ̄ η̄ ′]+
c̄

48π

∫
dz̄

(
η̄ ′ξ̄ ′′ − ξ̄ ′η̄ ′′) .

The central charges c and c̄ determine the unique central extension of the ordinary
algebra of diffeomorphisms. These constants can occur classically, coming, for in-
stance, from boundary terms in the generators [97], or can appear upon quantization.
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Now consider a conformal field theory for which the lowest eigenvalues of L0

and L̄0 are nonnegative numbers Δ0 and Δ̄0. In 1986, Cardy discovered a remark-
able result [148, 149]: the density of states ρ(Δ , Δ̄) at eigenvalues (Δ , Δ̄) of L0 and
L̄0 has the simple asymptotic behavior

lnρ(Δ , Δ̄) ∼ 2π

⎧⎨
⎩

√
ceffΔ

6
+

√
c̄effΔ̄

6

⎫⎬
⎭ , with ceff = c−24Δ0, c̄eff = c̄−24Δ̄0.

(3.20)

The entropy is thus determined by the symmetry, independent of any other details—
exactly the sort of universality we are looking for.

A typical black hole is neither two-dimensional nor conformally invariant, of
course, so this result may at first seem irrelevant. But there is a sense in which black
holes become approximately two-dimensional and conformal near the horizon. For
fields in a black hole background, for instance, excitations in the r–t plane become
so blue shifted relative to transverse excitations and dimensionful quantities that
an effective two-dimensional conformal description becomes possible [150–152].
Indeed, as noted in Sect. 3.2.5, the full Hawking radiation spectrum can be derived
from such an effective description [50, 51]. Martin, Medved, and Visser have further
shown that a generic near-horizon region has a conformal symmetry, in the form of
an approximate conformal Killing vector [153, 154].

3.4.2 Horizons and Constraints

For the special case of the (2+1)-dimensional BTZ black hole, the Cardy formula
can be used directly to count states. For this solution, the boundary at infinity is
geometrically a two-dimensional flat cylinder, and the asymptotic diffeomorphisms
that respect boundary conditions satisfy a Virasoro algebra with a classical central
charge [97], which can be used in the Cardy formula [98, 99]. As described in Sect.
3.3.1, this calculation can be extended to a number of near-extremal black holes
whose near-horizon geometry contains a BTZ factor. For more general black holes,
though, something new is needed.

One key question, I believe, is how to specify that one is talking about a black
hole in quantum gravity. One cannot simply require a fixed metric: the components
of the metric do not all commute and cannot be simultaneously specified in a quan-
tum theory. For the BTZ case, the key element is a set of boundary conditions at
infinity, but in general it seems more natural to consider conditions at the horizon.
Two approaches to this question are currently under investigation, each leading to an
effective two-dimensional conformal description in which the Cardy formula might
be applicable.
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3.4.2.1 The Horizon as a Boundary

The first approach [155, 156] is to introduce “boundary conditions” at the horizon.
The horizon is not, of course, a genuine boundary, but it is a place at which we must
restrict the value of the metric, precisely to ensure that it is a horizon. As in the BTZ
case, such a restriction forces us to add new boundary terms to the canonical gener-
ators of diffeomorphisms, changing their algebra. One finds a conformal symmetry
in the r–t plane with a classical central charge. For a large variety of black holes, it
has been shown that the Cardy formula then yields the correct entropy.4

On the other hand, the diffeomorphisms whose algebra yields that central charge,
essentially those that leave the lapse function invariant, are generated by vector
fields that blow up at the horizon. This is not necessarily a bad thing—from the per-
spective of an external observer, many physical quantities diverge at the horizon—
but the status of these transformations is not clear. In addition, the “horizon as
boundary” method has trouble with the two-dimensional black hole, and some nor-
malization issues are not completely sorted out. A related approach is to look for
approximate conformal symmetry near the horizon [158, 159]; one again finds a
Virasoro algebra with a central charge that seems to lead to the correct entropy, but
there are again some normalization ambiguities.

3.4.2.2 Horizon Constraints

A more recent approach [160, 161] is to impose the presence of a horizon by adding
“horizon constraints” in the canonical formulation of gravity, that is, introducing
new constraints that restrict data on a specified surface to be that of a black hole
horizon. In outline, the procedure is this:

1. Dimensionally reduce to the two-dimensional r–t plane near the horizon
2. Continue to Euclidean signature, shrinking the horizon to a point as in

Sect. 3.2.5, and evolve radially
3. Impose constraints on a small circle around the horizon that force the initial data

be that of a “stretched horizon”
4. Adjust the diffeomorphism constraints on the stretched horizon a la Bergmann

and Komar [162–164] to make them commute with the new horizon constraints
5. Find the resulting algebra and central charge

The Cardy formula again reproduces the correct Bekenstein–Hawking entropy.

3.4.2.3 Universality Again

If either of these approaches is to be an answer to the “problem of universality,” it
must be that the horizon conformal symmetries are secretly present in the various

4 For this section, see [157] for further references.
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other computations of black hole entropy. I do not know whether this is the case; it
is a subject of continuing research.

One fairly simple test is to compare the near-horizon Virasoro algebra of
Sect. 3.4.2 with the asymptotic Virasoro algebra of the BTZ black hole, which is the
key element in the AdS/CFT computations of Sect. 3.3.1. It is shown in [161] that
after a suitable matching of coordinate choices, the central charges and conformal
weights exactly coincide, providing one piece of evidence for the proposed expla-
nation of universality. There is also an intriguing link to the loop quantum gravity
approach of Sect. 3.3.1: the induced horizon Chern-Simons theory in loop quantum
gravity is naturally associated with a two-dimensional conformal field theory [165],
whose central charge matches the horizon central charge of Sect. 3.4.2. Searches
for hidden conformal symmetry in loop quantum gravity, the fuzzball approach, and
induced gravity are currently underway.

3.4.3 What Are the States?

In light of the problem of universality, is there anything general we can say about
the states responsible for black hole thermodynamics? At first sight, the answer
must be “no”: if a universal underlying structure controls the density of states, there
should be many different models with different degrees of freedom but with the
same thermodynamic properties. Nevertheless, it may still be possible to find an
effective description that is valid across models.

To see this, let us first return to the BTZ black hole. In three spacetime dimen-
sions, general relativity has a peculiar feature: it is a topological theory, with no
propagating degrees of freedom [166]. Where, then, do the black hole degrees of
freedom come from?

The answer to this paradox is at least partially understood [81]. For the (2+1)-
dimensional Einstein–Hilbert action to have any black hole extrema, one must im-
pose anti-de Sitter boundary conditions at infinity. Diffeomorphisms that do not
respect these boundary conditions are no longer true invariances of the theory, and
states one might naively take to be physically equivalent—states that differ only by
a diffeomorphism—must be considered distinct if the diffeomorphism connecting
them is incompatible with the boundary conditions. New physical degrees of free-
dom thus appear, which can be labeled by diffeomorphisms that fail to respect the
anti-de Sitter boundary conditions. The action for these new degrees of freedom can
be extracted explicitly from the Einstein–Hilbert action [167], and the resulting dy-
namics is that of a Liouville theory, a two-dimensional conformal field theory whose
central charge matches the classical value obtained by Brown and Henneaux [97].
Whether one can actually count the states in this theory to reproduce the Bekenstein–
Hawking entropy remains an open question [81, 168].

For higher-dimensional black holes, the problem is quite a bit more difficult. One
possible approach is to start with the Virasoro algebra (3.19) for the near-horizon
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conformal algebra of Sect. 3.4.2.2. In Dirac quantization, the existence of a con-
straint ordinarily restricts the physical states: we should require that

L[ξ ]|phys〉 = L̄[ξ̄ ]|phys〉 = 0. (3.21)

But if the central charge c is nonzero, these conditions are incompatible with the
algebra (3.4.2). The solution is known in conformal field theory—one can, for in-
stance, require only that the positive frequency parts of the Virasoro generators an-
nihilate physical states [146]—but the result is much the same as for the BTZ black
hole: certain states that were originally counted as nonphysical have now become
physical. While it is not exactly the same, this phenomenon is reminiscent of the
Goldstone mechanism [169], in which a spontaneously broken symmetry leads to
massless excitations in the “broken” directions. And like the Goldstone mechanism,
it can provide an effective description of degrees of freedom that is independent of
their fundamental physical makeup.

One way to see whether this picture makes sense is to examine the path inte-
gral measure. The effect of adding a central charge to the Virasoro algebra is to
make certain constraints second class [163, 164]. The presence of such second class
constraints leads to a new term in the measure, similar to the Faddeev–Popov de-
terminant in quantum field theory [170]. Such a determinant can be interpreted as a
contribution to the phase space volume, or the density of states, and might explain
the counting of black hole states. For the present case, the relevant determinant is of
the form

det

∣∣∣∣− c
12

d3

dx3 +
d
dx

L+L
d
dx

∣∣∣∣
1/2

with L = L0 +L1e2ix +L−1e−2ix.

Work on evaluating and understanding this expression is in progress.
Perhaps the most important test of this idea would be to couple the effective hori-

zon degrees of freedom to external matter and see if one could reproduce Hawking
radiation. In 2+1 dimensions, this can be done [82]. In higher dimensions, it may
be possible to take advantage of the conformal description of Hawking radiation
discussed in Sect. 3.2.5, but this remains to be seen.

3.5 Open Questions

Some 35 years after the seminal papers of Hawking and Bekenstein, black hole equi-
librium thermodynamics is a mature subject. The role of trans-Planckian excitations
near the horizon, discussed in Sect. 3.2.5, is not yet fully understood, and questions
of possible observational tests remain of great interest, but I will risk the claim that
the macroscopic thermodynamic properties of black holes are largely under control.

The microscopic, statistical mechanical picture of the black hole, in contrast,
is poorly understood and is the subject of a great deal of research. This is hardly
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surprising—black hole microstates are almost certainly quantum gravitational, and
we are still far from a complete, compelling theory of quantum gravity.

Much of the current research focuses on particular microscopic models of black
holes, from string theory, loop quantum gravity, and a number of other perspectives.
But there are also some broader open questions. In these lectures, I have emphasized
one of these, the problem of universality, mainly because it is a focus of my own
research. But I will close by briefly mentioning two other deep questions.

3.5.1 The Information Loss Paradox

Consider a configuration of matter in a pure state—a spherically symmetric state of
a scalar field, for instance—that collapses to form a black hole, which then evap-
orates by Hawking radiation. If Hawking radiation is exactly thermal, and if the
black hole evaporates completely, the ultimate result will be a transition from an
initial pure state to a final mixed (thermal) state [171]. Such an evolution is not uni-
tary and seems to violate the basic principles of quantum mechanics. Similarly, we
can imagine a black hole held at equilibrium by the continual ingestion of mass to
balance its Hawking radiation; this would seem to allow us to convert an arbitrarily
large amount of matter from a pure to a mixed state.

The solution to this paradox is heavily debated [172–174]. If the black hole hori-
zon is fundamental (as it is not in, for instance, the “fuzzball” proposal discussed
in Mathur’s lectures [85]), there is wide agreement that any answer must involve a
breakdown of locality; see, for example, [175–178]. But there is certainly no con-
sensus as to how such a breakdown might occur. The answer is likely to involve
deep problems of quantum gravity, a setting in which nonlocality is both inevitable
and very poorly understood [83].

3.5.2 Holography

As a count of microscopic degrees of freedom, the Bekenstein–Hawking entropy
(3.2) has a peculiar feature: the number of degrees of freedom is determined by the
area of a surface rather than the volume it encloses. This is very different from con-
ventional thermodynamics, in which entropy is an extensive quantity, and it implies
that the number of degrees of freedom grows much more slowly with size than one
would expect in an ordinary thermodynamic system.

This “holographic” behavior [179, 180] seems fundamental to black hole statis-
tical mechanics, and it has been conjectured that it is a general property of quantum
gravity. It may be that the generalized second law of thermodynamics requires a
similar bound for any matter that can be dropped into a black hole; a nice review
of such entropy bounds can be found in [181]. The AdS/CFT correspondence dis-
cussed in Sect. 3.3.1 is perhaps the cleanest realization of holography in quantum
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gravity, but it requires specific boundary conditions. A more general formulation
proposed by Bousso [182] is supported by classical computations [183], and is cur-
rently a very active subject of research, extending far beyond its birthplace in black
hole physics to cosmology, string theory, and quantum gravity.

Acknowledgments These lectures were given during an appointment to the Kramers Chair at
Utrecht University, for whose hospitality I am very grateful. This work was supported in part by
U.S. Department of Energy grant DE-FG02-91ER40674.

Appendix: Black Hole Basics

Intuitively, a black hole is a “region of no return,” an area of spacetime from which
not even light can escape. For a spacetime that looks asymptotically close enough
to Minkowski space, this intuitive picture is formalized by the notion of an event
horizon, the boundary of the past of future null infinity, that is, the boundary beyond
which no light ray can reach infinity [184]. The event horizon has been extensively
studied and has many interesting global properties: for example, it cannot bifurcate
and cannot decrease in area.

Unfortunately, while the event horizon has nice properties, it does not seem to
be quite the right object to capture local physics. The problem is that the event
horizon is teleological: that is, its definition requires knowledge of the indefinite
future. To illustrate this with a thought experiment, imagine that we are at the center
of a highly energetic ingoing spherical shell of light, currently two light years from
Earth. Suppose this shell is so energetic that it has a Schwarzschild radius of one
light year.5 If I now shine a flashlight into the sky, 1 year from now the light will
have traveled one light year, where it will meet the incoming shell just as the shell
reaches its own Schwarzschild radius. At that point, the pulse of light from the
flashlight will be trapped at the horizon of an ordinary Schwarzschild black hole
and will be unable to travel any farther outward. In other words, in this scenario we
are now at the event horizon of a black hole, even though we will detect no change
in our local observations until we are abruptly crushed out of existence 2 years from
now.

Since it seems implausible that Hawking radiation “now” can depend on such
future events, the event horizon is probably not quite the right object for the study
of black hole thermodynamics. Over the past few years, a number of attempts have
been made to suitably “localize” the horizon; a nice review can be found in [185].

In these lectures, I will mainly use the concept of an “isolated horizon” [186], a
locally defined surface that seems appropriate for equilibrium black hole thermody-
namics. An isolated horizon is essentially a null surface whose area remains constant
in time, as the horizon of a stationary black hole does. A thought experiment may
again be helpful. Imagine a spherical lattice studded with equally spaced flashbulbs,

5 This is admittedly not very likely, but note that it cannot be ruled out observationally: no signal
could propagate faster than such a shell, so we would not know of its existence until it reached us.
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set to all go off at the same time (as measured in the lattice rest frame). When the
bulbs flash, they will emit two spherical shells of light, one ingoing and one out-
going. In ordinary nearly flat spacetime, the area of the outgoing sphere increases
with time. At the horizon of a Schwarzschild black hole, on the other hand, it is not
hard to check that the area of the outgoing sphere remains constant, while inside the
horizon, both spheres decrease in area.6

To generalize this example, we first define a nonexpanding horizon H in a d-
dimensional spacetime to be a (d−1)-dimensional submanifold such that [15, 186]

1. H is null, with null normal �a;
2. the expansion of H vanishes: ϑ(�) = qab∇a�b = 0, where qab is the induced

metric on H ;
3. −T a

b�
b is future directed and causal.

These conditions imply the existence of a one-form ωa such that

∇a�
b = ωa�

b on H .

The surface gravity for the normal �a is then defined as

κ(�) = �aωa. (3.22)

Note, though, that the normal �a is not unique: a null vector has no canonical nor-
malization, so if �a is a null normal to H and ϕ is an arbitrary function, eϕ�a is
also a null normal to H . We can partially fix this scaling ambiguity by demand-
ing further time independence: we define a weakly isolated horizon by adding the
requirement

4. L�ω = 0 on H ,

where L denotes the Lie derivative. This constraint implies the zeroth law of black
hole mechanics that the surface gravity is constant on the horizon.

Even with this last condition, the null normal �a may be rescaled by an arbitrary
constant. Such a rescaling also scales the surface gravity, so the numerical value
of κ(�) remains undetermined. This reflects a genuine physical ambiguity in the
choice of time at the horizon. Note that the first law of black hole mechanics (3.3)
requires such an ambiguity: mass is only defined relative to a choice of time, so for
consistency, rescaling time must also rescale the surface gravity.

For a stationary black hole, �a can be chosen to coincide with the Killing vector
that generates the horizon, whose normalization is fixed at infinity—that is, we can
use the global properties of the solution to adjust clocks at the horizon by comparing
them to clocks at infinity. If, on the other hand, we wish to focus on physics only
at or very near the horizon, the normalization becomes more problematic. One can
use the known properties of exact solutions to write an expression for the surface
gravity in terms of other quantities at the horizon, thereby fixing �a [15], but so far
the procedure seems somewhat artificial.

6 The outgoing sphere remains outgoing with respect to the lattice, of course; as the lattice col-
lapses, its area decreases even faster than that of the outgoing light sphere.
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As noted in Sect. 3.2.2, weakly isolated horizons obey the four laws of black
hole mechanics, the second law in the strong form that the area, by definition, re-
mains constant. Generalization to dynamical, evolving horizons are also possible,
and could provide a setting for nonequilibrium black hole thermodynamics; for a
recent review, see [187].
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146. P. Di Francesco, P. Mathieu and D. Sénéchal, Conformal Field Theory (Springer, New York

1997). 111, 115
147. C. Teitelboim, in Quantum Theory of Gravity, edited by S. M. Christensen (Adam Hilger,

Bristol 1984). 111
148. J. A. Cardy, Nucl. Phys. B270, 186 (1986). 112
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Chapter 4
Colliding Black Holes and Gravitational Waves

U. Sperhake

Abstract This article presents a summary of numerical simulations of black-hole
spacetimes in the framework of general relativity. The first part deals with the 3+1
decomposition of generic spacetimes as well as the Einstein equations which forms
the basis of most work in numerical relativity. Technical aspects of the resulting
numerical evolutions and the diagnostics of the resulting spacetimes are discussed.
The second part presents an overview of the history of numerical simulations of
black-hole spacetimes. Finally, we summarize results derived from numerical black-
hole simulations obtained after the breakthrough in 2005. The relevance of these
results in the context of astrophysics, gravitational wave physics, and fundamental
physics is discussed.

4.1 Introduction

In Einstein’s theory of general relativity gravitation is a manifestation of the cur-
vature of the spacetime rather than a force in the traditional sense. The fundamen-
tal quantity which encapsulates all information about the spacetime curvature is
the spacetime metric, a set of ten functions of space and time. This metric obeys
the Einstein equations which equates the Einstein tensor, a complex combination of
the metric and its first and second derivatives, with the mass–energy tensor describ-
ing the matter distribution. The Einstein equations thus represent a system of ten
second-order partial differential equations, one of the most complicated systems of
equations in all of physics. Einstein himself did not expect physically meaningful
solutions to be found analytically and it came as a surprise when Karl Schwarzschild
found his famous solution of a static, spherically symmetric vacuum spacetime just
a few months after the publication of general relativity in 1916. This solution is now
known as a “Schwarzschild black hole”, but the term black hole was not coined un-
til much later by John Wheeler. The Schwarzschild solution has lead to invaluable
insight into general relativity and was soon generalized to include electric charge
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in the form of the Reissner-Nordström solution. The key simplification leading to
these analytic solutions is the high degree of symmetry of the spacetime which re-
duces the Einstein equations to a 1D problem with no time dependence. Relaxing
the assumption of spherical symmetry to allow for a spacetime with non-vanishing
angular momentum led to a much more complex system of equations even in the
limit of stationarity. It took more than four decades until Roy Kerr found the ana-
lytic expressions for the metric of an axisymmetric spacetime containing a rotating
black hole [168]. Again, the inclusion of electric charge resulted in a generalization,
the so-called Kerr–Newman solution.

For a long time, these black-hole solutions were considered a mathematical
curiosity rather than objects of physical relevance. This picture has changed dra-
matically in the course of recent decades, however. Not only are black holes now
accepted as a common end product of the evolution of very massive stars, they are
also recognized as almost ubiquitously present in the form on supermassive black
holes (SMBH) at the centers of at least more massive galaxies [176]. The formation
history of these SMBHs is subject of ongoing research in astrophysics and is likely
to be closely interrelated with structure formation in the universe in general (see,
e.g., [118, 150, 151, 181, 190, 191, 268–270]). Observations of the central regions
of galaxies have also revealed significant correlation of the masses of black holes
with the structure of the galaxy cores, specifically the velocity dispersions and the
density profiles [65, 123, 135, 197, 199, 202]. Given the all absorbing nature of
black holes, it is quite remarkable, that they also form the engine for the strongest
sources of electromagnetic radiation observed in the universe. Active galactic nu-
clei are now commonly believed to be driven by accretion around black holes. Their
observation at cosmological redshifts provides valuable constraints on the forma-
tion history of SMBHs. Most notably, the discovery of the most luminous quasar
at z ≈ 6 in the Sloan Digital Sky Survey [121] implies that black holes of masses
around 109 M� were already in existence less than 109 years after the big bang.

Black holes also play a fundamental role in the ongoing effort to detect grav-
itational waves. This type of radiation is general relativity’s analogue of electro-
magnetic waves and is a direct consequence of the Einstein equations. In fact, such
radiative solutions were recognized by Einstein himself, but were subject of a long-
lasting debate on whether they represent gauge effects or truly physical phenomena.
There is no doubt left on the physical nature of gravitational waves (GW) now, but
their direct detection is made enormously difficult by their extremely weak interac-
tion with matter. To date, therefore, the only evidence for the existence of gravita-
tional waves is indirect and based on observations of binary pulsar systems. Most
notably, decade long observations of the Hulse–Taylor pulsar 1913+16 show a grad-
ual decrease in the orbital period which is in excellent agreement with the energy
loss of the system expected from emission of gravitational waves according to the
theory of general relativity [164, 260]. This indirect evidence has led to the award
of the 1993 Nobel Prize to Hulse and Taylor and also provided motivation for the
construction of laser interferometric detectors in multinational collaborations such
as the American LIGO [1, 76], the European GEO600 [188] and VIRGO [4, 47],
and the Japanese TAMA [15, 259]. A space-based interferometer, LISA [155], is
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targeted for launch in 2018 and will facilitate high signal-to-noise ratio measure-
ments of low-frequency gravitational wave sources. The strongest source for all
these detectors is the inspiral and coalescence of black-hole binaries. Obtaining a
detailed theoretical understanding of these binary systems is crucial to support the
effort to directly detect GWs.

The enormous complexity of the Einstein equations in the absence of strong sym-
metry and/or time independence makes it impossible to study binary-black-hole
systems analytically in the framework of full general relativity. In consequence,
the theoretical modeling has pursued two alternative approaches. The first replaces
general relativity by an approximative description of the physics which allows for
analytic studies. In particular, binaries can be described with good accuracy in the
framework of post-Newtonian (PN) theory as long as they orbit each other with suf-
ficient separation (see [56] for a review). In the late stages after the merger of the
binary, in contrast, the system closely resembles a single Kerr hole and is described
well by perturbation theory, i.e., the linearization of Einstein’s equations around a
Kerr background. We will return to both of these approximation theories below. The
second approach to studying binary systems is to use numerical methods to solve
the full Einstein equations. The research field concerned with this approach is called
numerical relativity and is the main subject of this report.

It is a remarkable coincidence that major breakthroughs in numerical relativ-
ity have been achieved at almost exactly the same time that the above-mentioned
ground-based laser interferometers have advanced to the stage that they are capable
of performing observation runs at or close to the design sensitivity. These are there-
fore very exciting times for black-hole and gravitational wave physics and the com-
munity is about to open an entirely new window to the universe with unprecedented
opportunities to gain fundamentally new insight into the structure and evolution of
the universe.

This article is structured as follows. In Sect. 4.2 we summarize the 3+1 decom-
position of spacetime. A list of ingredients for a numerical simulation is given in
Sect. 4.3. Methods to extract physical information from a simulation are discussed
in Sect. 4.4. In Sects. 4.5 and 4.6, we present a brief overview of the history of black-
hole simulations and summarize results obtained in the last few years following the
breakthrough in binary simulations in 2005.

Notation: We use geometric units, that is we set the gravitational constant G and
the speed of light c to unity. We use Einstein summation and let Latin indices run
from 1 to 3 and Greek indices from 0 to 3. In sign convention we follow [140] and
use the convention of Misner, Thorne, and Wheeler (MTW) [205].

4.2 The 3+1 Decomposition of General Relativity

The numerical solution of the Einstein equations faces a multitude of conceptual dif-
ficulties commonly not present in other areas of computational physics. We will dis-
cuss various of these problems further below, but we cannot even get started without
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addressing the most fundamental problem; the Einstein equations are expressed in
terms of geometrical objects, so-called tensors. Computers, in contrast, exclusively
operate on numbers. Furthermore, general relativity is based on the unification of
space and time in the 4D spacetime, whereas physical systems are commonly de-
scribed in terms of a time evolution of the state of the system.

The most common approach to tackle these problems in numerical relativity is
the so-called 3+1 decomposition based on the canonical work of Arnowitt, Deser,
and Misner (ADM) [25] and later formulated by York [277, 279]. The key idea
here is to decompose the 4D spacetime into a one-parameter family of 3D spatial
slices. Each of these slices describes a snapshot of the system under consideration
and the Einstein equations tell us how the system evolves from one snapshot to
the next. Each slice is described in terms of the components of two fundamental
tensors or “forms”, the 3D metric and the extrinsic curvature. These components
can be represented in the computer as arrays of numbers. In order to assign unique
meaning to these fields of numbers, however, we need a basis expansion of the
tensors. Commonly this basis is a coordinate basis, so that there remains the task
of determining or evolving the coordinates. The physics of the system can only be
interpreted as a combination of the tensor components (their numerical values) in
combination with the meaning of the coordinates. While the choice of coordinates is
in principle arbitrary because of the invariance of general relativity under coordinate
or gauge transformations, the actual choice of coordinates turns out to be crucial for
obtaining a stable numerical scheme. We will discuss this issue in more detail below.

Most of this article will focus on numerical work based on the 3+1 decompo-
sition. We emphasize, however, that alternative approaches have been investigated.
The most important alternative is based on the characteristics of the Einstein equa-
tions, the light or null cones. These characteristic or null foliations of spacetime
have been pioneered in the seminal work of Bondi and Sachs [66, 236] and lead to
a remarkably simple hierarchy of the Einstein equations. The main difficulty of the
characteristic approach is the breakdown of the characteristic coordinate systems in
regions of strong curvature due to the formation of caustics. The characteristic ap-
proach is still subject of considerable research and has also inspired the combined
use with 3+1 or Cauchy formulations of general relativity in the form of Cauchy-
characteristic matching. For further details the reader is referred to Winicour’s re-
view article [272] and references therein.

An alternative combination of the benefits of the 3+1 and characteristic decom-
position can be obtained using the conformal field equations based on the studies by
Friedrich [129]. Here one evolves hyperboloidal surfaces which are spatial every-
where but asymptote toward null infinity. For more information on this direction we
recommend Frauendiener’s review article [128] as well as references therein.

We conclude this introduction by pointing to further review articles on numerical
relativity and black-hole simulations. It is beyond the scope of this work to give a
comprehensive account of all the foundations of numerical relativity and we will
primarily adopt a more practical point of view here. Further details and mathemat-
ical rigor can be found in York’s articles. We also recommend Gourgoulhon’s ex-
cellent review for a detailed introduction to the 3+1 decomposition in lecture-style
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format [140]. A review focusing more on the mathematical aspects of numerical
relativity and the relationship between numerical and mathematical relativity is
given in [167]. Reference [45] presents more details on the numerical techniques
used for modeling compact binaries and also discusses neutron star simulations in
more depth. The most recent review article by Pretorius [231] summarizes black-
hole simulations performed in the last 2 years with particular emphasis on the final
stages of the coalescence.

4.2.1 The Einstein Equations

The fundamental quantity which we need to determine is the 4D spacetime met-
ric gαβ . As the metric is a symmetric tensor, this corresponds to ten independent
components. Once we know the metric, we can calculate the Christoffel connection

Γ α
βγ =

1
2

gμα
(
∂βgγμ +∂γgμβ −∂μgβγ

)
, (4.1)

where gαβ is the inverse of the metric. From the connection we obtain the covariant
derivative and the Riemann tensor

Rαβγδ = ∂γΓ α
βδ −∂δΓ α

βγ +Γ α
μγΓ

μ
βδ −Γ α

μδΓ
μ
βγ . (4.2)

We thus have all the information to compute geodesics in this spacetime, geodesic
deviation and, as we will see below, the total mass and the gravitational radiation
generated in the spacetime.

In order to determine the metric, we need to solve the Einstein equations

Gαβ ≡ Rαβ −
1
2

Rgαβ = Tαβ , (4.3)

where the Ricci tensor and scalar are defined as contractions of the Riemann tensor:
Rβδ = Rμ

βμδ and R = Rμ
μ . The matter energy tensor Tαβ describes the matter

distribution of the spacetime.
Finding solutions to the Einstein equations is actually a simple task. Just take

any metric, compute the Riemann tensor according to Eq. (4.2), calculate the Ricci
tensor and scalar and finally the matter tensor Tαβ from Eq. (4.3). This provides
a solution to the Einstein equations with the matter sources Tαβ . The problem
with this approach is that matter tensors calculated in this way will in general not
correspond to any physically meaningful or realistic matter distribution. The dif-
ficult part is therefore not finding solutions to the Einstein equations, but rather
finding physically meaningful solutions. This is also the remarkable feature of
the Schwarzschild and Kerr solutions. They are believed to closely resemble real,
existing, physical objects. We therefore need to first prescribe the energy matter
tensor Tαβ and then determine the metric from the system of partial differential
equations (4.3).
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Black holes are vacuum solutions to the Einstein equations and as such obey the
vacuum Einstein equations which can be written as

Rαβ = 0. (4.4)

In the remainder of this work we will exclusively study systems with vanishing
energy matter tensor Tαβ = 0. We do not abandon the energy matter tensor, however,
without emphasizing that the simulation of compact binaries involving neutron stars
has been subject to comparable numerical efforts as has been the study of black-
hole binaries. Indeed, the first orbital simulations of compact binaries to have been
achieved in numerical relativity were neutron star binary systems [195, 201, 247].
For more details and recent developments of neutron star, mixed black-hole neutron
star as well as boson-star binaries, the reader is referred to these papers as well
as [14, 120, 217, 248] and references therein.

As a starting point for the 3+1 decomposition we consider a 4D manifold M
with coordinates xα and a metric of signature −+++. We next require a foliation.
That is, we assume that there exists a function t(xα) of the spacetime coordinates
xα with non-vanishing gradient everywhere. Without loss of generality we assume
that the gradient satisfies gμν∇μ t∇ν t < 0. In consequence, the slices t = const are
spacelike in the sense that the norm of any vector tangent to the slices is positive,
i.e., has the opposite sign of the norm of ∇t. The foliation is graphically illustrated
in Fig. 4.1 where we show two hypersurfaces corresponding to t = 0 and t = dt. We
next consider vectors v tangent to a hypersurface Σt with fixed t. By definition these
vectors have vanishing inner product with the gradient of t: vμ∇μ t = 0. The timelike
normal field of the hypersurfaces is therefore given by

t(x )=0α

Σ
0

n

n

t(x )=dtα
β

δ

Σ
dt

t

α

Fig. 4.1 Illustration of a time-like foliation of spacetime. One spatial dimension is suppressed for
presentation purposes
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nα =
∇α t√

−∇μ t∇μ t
, (4.5)

and its dual vector field is nα = gαμnμ .
It turns out to be convenient to use coordinates adapted to the 3+1 foliation. These

are given by t and three further coordinates labeling points inside each hypersurface
Σt . The spatial coordinates xi define a three-parameter family of curves xi = const
which thread the foliation, that is, any such curve intersects each hypersurface Σt

exactly once. In Fig. 4.1 we have illustrated such a curve together with its tangent
vector ∂t . We emphasize that ∂t is in general not orthogonal to the hypersurfaces Σt .

We have now split the coordinate freedom into two different parts. First, we can
choose the foliation via the function t, second we have the freedom to label the
points inside any hypersurface by choosing the spatial coordinates xi. In the ma-
jority of formulations of the Einstein equations, this freedom is encapsulated in the
following two functions. First, the lapse function is defined as

α =
√

−∇μ t∇μ t. (4.6)

Loosely speaking, it represents a measure for the separation in proper time be-
tween two neighboring hypersurfaces Σt and Σt+dt . Translated into a more numer-
ical language, the lapse function enables us to control the advance in proper time
corresponding to an advance in coordinate time dt. Often, one wants to slowdown
the advance in proper time in regions where the code encounters a singularity by
locally decreasing the lapse toward zero.

The second gauge function is the shift vector defined by

β i = (∂t)i −αni, (4.7)

as illustrated in Fig. 4.1. The shift vector determines how points with identical spa-
tial labels xi are identified on neighboring slices.

Given the decomposition of spacetime into a time-like foliation of space-like
slices, it will be helpful to apply a similar decomposition to the geometric objects.
For this purpose we define the projection operator

⊥μ
α = δ μα +nμnα . (4.8)

For any given tensor this enables us to define its spatial projection. For example,
for a tensor Tα

β we have

⊥Tα
β = ⊥α

μ⊥ν
βT μ

ν , (4.9)

and likewise for tensors with different arrangements of indices. Projections onto the
time direction are directly obtained from contraction with the unit normal field nα .
For our example we obtain the time projection T μ

νnμnν . We can also define mixed
projections, as for example ⊥α

μT μ
νnν .
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In particular, we can apply the projection operator to the metric itself and obtain

γαβ ≡⊥gαβ = gαβ +nαβ = ⊥αβ . (4.10)

This projection of the metric defines an induced 3D metric on the hypersurface
in the sense that its effect on all geometric objects tangent to the hypersurface is the
same as if the spacetime metric were acting on them.

We now recall the definitions of the connection and the Riemann tensor in
Eqs. (4.1) and (4.2). These definitions are valid for an arbitrary dimension and
thus also apply to the induced metric. We merely replace Greek with Latin indices
in these definitions and obtain the 3D Christoffel connection and Riemann tensor.
From the connection we derive the 3D covariant derivative Da. For example, for a
3D tensor with one upper and one lower index, the covariant derivative is

DaT b
c = ∂aT b

c +Γ b
ia T i

c −Γ i
caT b

i. (4.11)

If we use coordinates adapted to the 3+1 decomposition, this can be shown to be
identical to the spatial components of

DαT β
γ = ⊥α

μ⊥β
ν⊥ρ

γ∇μT ν
ρ . (4.12)

In summary, we can apply the entire machinery of differential geometry to the
induced three-metric γαβ just as we applied it to the four-metric gαβ . We still need
to work out, however, how these 3D objects are related to their 4D counterparts.

Before we address this question, though, we need to introduce the extrinsic cur-
vature which is defined as

Kαβ = −⊥μ
α⊥ν

β∇νnμ . (4.13)

As illustrated in Figs. 2.2, 2.3, and 2.4 of [140], the extrinsic curvature can be
interpreted as the variation of the time-like unit normal field on the hypersurface.
We emphasize that Kαβ is by definition a purely spatial quantity. A straightforward
calculation leads to the important equivalent relation

Kαβ = −1
2
Lnγαβ , (4.14)

where Ln is the Lie derivative along the unit normal field nα .
We next address the question of how the 4D Riemann tensor is related to the

3D quantities. This is best done by considering the projections of the 4D Riemann
tensor. The calculations are lengthy but straightforward and the interested reader is
referred to [140]. Here we merely list the resulting relations

⊥μ
α⊥ν

β⊥γ
ρ⊥σ

δRρσμν = Rγ
δαβ +Kγ

αKδβ −Kγ
βKαδ , (4.15)

⊥μ
α⊥ν

β⊥γ
ρnσRγσαβ = DβKγ

α −DαKγ
β , (4.16)

⊥ρα⊥μ
βnσnνRρσμν = LnKαβ +

1
α

DαDβα+KαμKμ
β , (4.17)
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where we use the symbol R to distinguish the 3D Riemann tensor from its 4D coun-
terpart R. These equations are often referred to as the Gauss–Codacci or Gauss–
Codacci–Mainardi equations. We note that all further projections vanish due to
the symmetry of the Riemann tensor. Contracted versions of these equations are
straightforwardly obtained by multiplication with the metric gαβ .

If we look at the right-hand sides of these relations, all terms except for the Lie
derivative of Kαβ are purely spatial expressions. In adapted coordinates (t,xi) we
are therefore allowed to replace Greek by Latin indices which run from 1 to 3 only.
The Lie derivative of the extrinsic curvature, on the other hand, can be rewritten as

LnKαβ = L 1
α (∂t−β )Kαβ =

1
α

(
L∂t −Lβ

)
Kαβ =

1
α

(
∂tKαβ −Lβ

)
Kαβ , (4.18)

where the Lie derivative of the extrinsic curvature along the shift vector β is again
a purely spatial quantity.

Finally, we are in the position to decompose the Einstein equations Rαβ = 0
themselves. Again we refer the reader for details of the calculations to [140] and
summarize the results. As with the Riemann tensor, there are three projections. First,
we can project both indices onto the time direction. Inserting the above projections
of the Riemann tensor into Rμνnμnν leads to

R +K2 −KmnKmn = 0, (4.19)

where K = γmnKmn is the trace of the extrinsic curvature. This equation is known
as the Hamiltonian constraint. It does not contain any time derivatives but instead is
a relation which must be obeyed by the three-metric γi j and the extrinsic curvature
Ki j on each hypersurface. Similarly, we obtain the momentum constraint from the
mixed projection ⊥Rαμnμ

DiK −DmKim = 0. (4.20)

All the information about the time evolution is contained in the spatial projection
⊥Rαβ = 0 which leads to

(∂t −Lβ )Ki j = −DiD jα+α (Ri j −2KimKm
j +Ki jK) . (4.21)

Together with Eq. (4.14), this equation forms a second order in time evolution
system for the induced metric γi j. This system together with the Hamiltonian and
momentum constraints are often referred to as the “ADM” equations. This term is
not strictly correct because Arnowitt, Deser, and Misner used the canonical mo-
menta in place of the extrinsic curvature in their original work [25]. We will follow
common notation here, however, and will talk of the ADM equations in the remain-
der of this work.

It is this set of equations which is at the heart of the majority of work in numerical
relativity. It is highly instructive to discuss these equations in more detail. First, we
note that the equations do not provide any information on the gauge functions α
and β i. This is expected as these functions incorporate the coordinate freedom of
general relativity and therefore can be specified arbitrarily. Second, we count the
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degrees of freedom. We have a second-order system in time for the six independent
components of the symmetric three-metric γi j. Four of these are determined by the
constraints, so that there remain two dynamic degrees of freedom, the two degrees
of freedom of gravitation. Finally, the Bianchi identities

∇[νRαβ ]λμ = 0, ∇νGμν = 0 (4.22)

can be shown to propagate the constraint equations through the evolution. That is, if
the constraints are satisfied on some initial hypersurface and the evolution equations
hold, then the constraints are automatically satisfied on all other hypersurfaces. This
greatly simplifies the task of numerically evolving data; it is sufficient to enforce the
constraints on the initial data and evolve these using Eqs. (4.14) and (4.21).

In summary, we have reformulated the Einstein equations as an initial value prob-
lem. Given an initial snapshot of the three-metric γi j and the extrinsic curvature Ki j,
we merely need to specify gauge functions α and β i and subsequently can evolve
the data and reconstruct the entire spacetime. It is this conceptual simplicity of nu-
merical relativity that has inspired the community with a great deal of optimism
following the early work in the 1970s. In the next section, we will discuss the dif-
ficulties which have prevented the community from successfully implementing the
above recipe for several decades and also the solutions which finally have resulted
in the breakthroughs of 2005.

4.3 The Ingredients of Numerical Relativity

4.3.1 The Formulation of the Einstein Equations

We have discussed in detail how the ADM equations provide a conceptually simple
recipe for evolving a given set of initial data using numerical methods in general rel-
ativity. Unfortunately, all attempts of implementing these equations have resulted in
numerical instabilities after timescales much shorter than the dynamical timescale of
the systems under consideration. Because of their enormous complexity, the evolu-
tion equations defy all attempts of applying standard stability analysis. Most likely,
the instabilities observed in numerical relativity for such a long time are a conse-
quence of various causes. It is now commonly believed, however, that the structure
of the ADM equations makes them an unlikely candidate for providing long-term
stable numerical evolutions.

The key difficulty here is that the Einstein equations are a constraint system.
We have seen above, how the Einstein equations can be decomposed into evolution
equations and constraints. This decomposition is not unique, however. For exam-
ple, we can add any combination of the constraints to the right-hand side of the
evolution equations and thus obtain a different system. All such decompositions
describe the same physics and will have identical physical (constraint satisfying)
solutions. But the evolution equations also admit non-physical (constraint violating)
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solutions and this unphysical solution space depends on the decomposition. In par-
ticular, some decompositions will allow for unphysical solutions which rapidly grow
beyond control. We need to bear in mind in this context that any numerical solution
will inevitably satisfy the constraints only within some accuracy, so that such rapidly
growing solutions, if present, are likely to be excited by numerical noise. It is de-
sirable, for this purpose, to have a smooth dependence of the spacetime solution on
the initial data. This quality is encapsulated in the well-posedness of the system of
equations. While a well-posed system does not guarantee stable numerical evolu-
tions, it is generally accepted that a well-posed evolution system is a much more
likely candidate for successful numerical simulations.

The common approach to obtain well-posedness and thus some bounds on the
deviation in the time evolution of neighboring initial data sets is based on using
strongly or symmetric hyperbolic systems (see, e.g., [145] and references therein for
definitions). Indeed, it was shown in [172] that a first-order reduction of the ADM
equations is weakly hyperbolic and that the standard finite differencing applied to
weakly hyperbolic systems results in ill-posed systems [90].

As a result of the continued problems encountered in evolutions using the ADM
equations, a wealth of alternative formulations of the Einstein equations has been
suggested in the literature [13, 43, 59, 62, 130, 134, 172, 207, 239, 246]. To date,
however, only two of these have been demonstrated to facilitate long-term sta-
ble evolutions of black-hole binary spacetimes. These are the Baumgarte–Shapiro–
Shibata–Nakamura (BSSN) system [43, 246] and the generalized harmonic gauge
(GHG) formulation [134, 227]. We will now discuss these two systems in some
more detail.

4.3.1.1 The BSSN System

The BSSN system results from the ADM equations by applying the following mod-
ifications. First, the extrinsic curvature is split into its trace and a tracefree part.
Second, a conformal transformation is applied to the three-metric and the extrinsic
curvature. Finally, a contracted version of the Christoffel symbols of the conformal
metric is introduced as an additional variable. The BSSN variables are then given
by

φ =
1

12
ln(detγi j), γ̃i j = e−4φ γi j,

K = γmnKmn, Ãi j = e−4φ
(

Ki j −
1
3
γi jK

)
,

Γ̃ i = γ̃mnΓ i
mn = −∂mγ̃ im. (4.23)

This corresponds to a rearrangement of the degrees of freedom which is similar
to the York–Lichnerowicz split underlying most of the initial data calculation which
we will discuss below in Sect. 4.3.3. Expressing the ADM equations in terms of
these variables leads to the BSSN system
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∂t γ̃i j = βm∂mγ̃i j +2γ̃m(i∂ j)βm − 2
3
γ̃i j∂mβm −2αÃi j, (4.24)

∂tφ = βm∂mφ +
1
6
(∂mβm −αK), (4.25)

∂t Ãi j = βm∂mÃi j +2Ãm(i∂ j)βm − 2
3

Ãi j∂mβm + e−4φ (αRi j −DiD jα)TF

+α
(
K Ãi j −2Ãi

mÃm j
)
, (4.26)

∂tK = βm∂mK −DmDmα+α
(

ÃmnÃmn +
1
3

K2
)

, (4.27)

∂tΓ̃ i = βm∂mΓ̃ i − Γ̃ m∂mβ i +
2
3
Γ̃ i∂mβm +2αΓ̃ i

mnÃmn

+
1
3
γ̃ im∂m∂nβ n + γ̃mn∂m∂nβ i

− 4
3
αγ̃ im∂mK +2Ãim (6α∂mφ −∂mα)

−
(
σ +

2
3

)(
Γ̃ i − γ̃mnΓ̃ i

mn

)
∂kβ k, (4.28)

where the superscript TF means that we take the tracefree part of the preceding
expression. The last term on the right-hand side of Eq. (4.28) vanishes in the contin-
uum limit by virtue of the definition of Γ̃ i in Eq. (4.23). It has been shown in [273],
however, to cure instability problems observed in simulations which do not employ
octant symmetry [7]. In practice, setting the free parameter σ = 0 proves satisfac-
tory. Alternatively to using this term, Alcubierre et al. [9] achieve stable evolutions
by recalculating Γ̃ i from the metric γ̃i j whenever it appears on the right-hand side
of Eqs. (4.24), (4.25), (4.26), (4.27), and (4.28) in undifferentiated form. So far,
all successful implementations of the BSSN equations also require us to enforce
the vanishing of the trace of Ãi j. This is realized numerically by replacing Ãi j with
Ãi j − γ̃i j γ̃mnÃmn after each timestep. Some codes also enforce in a similar way the
constraint det γ̃i j = 1.

A further modification of the BSSN system has been introduced in [94] who
evolve the conformal factor in terms of the variable χ = e4φ . Using this “χ-version”
of the BSSN system has in some instances been found to result in better convergence
properties [81].

The hyperbolicity of the BSSN system was studied in [238] and provided first
insight into how well-posedness of the BSSN system is actually achieved. The sen-
sitivity of the hyperbolicity properties of the system under minor changes in the
equations may also explain why certain modifications, such as the enforcement of
trÃi j = 0, appear to be necessary to obtain long-term stability. Notwithstanding the
various open questions underlying the stability properties of the different formu-
lations of the Einstein equations, the BSSN system has become the most popular
choice in practice for writing the Einstein equations in simulations of black-hole
and/or neutron star binaries.
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4.3.1.2 The Generalized Harmonic Formulation

In contrast to the BSSN system, the generalized harmonic formulation is not derived
from the ADM equations. Instead, it is based on the 4D version of the Einstein
equations in harmonic gauge. The harmonic gauge condition is

�xα ≡ ∇μ∇μxα = 0 (4.29)

and casts the Einstein equations in a particularly convenient form. Specifically, the
Ricci tensor can be written as

Rαβ = −1
2

gμν∂μ∂νgαβ + . . . , (4.30)

where the dots denote further terms containing the metric and its first derivatives,
but no second derivatives. The principal part of the Einstein equations Rαβ = 0 is
therefore identical to that of the wave equation which has made this gauge very
popular in analytic studies of the Einstein equations (see e.g., [83]).

Even though this structure is also very appealing from a numerical point of view,
it has not been used successfully in black-hole simulations. It has been shown in
[134] how one can generalize this system to accommodate arbitrary gauge choices
while still preserving the wave-like character of the principal part. This is realized
by introducing the source functions

Hα = �xα , (4.31)

which vanish for the special choice of harmonic gauge. With these functions, the
Einstein equations in vacuum can be written as

Rαβ = −1
2

gμν∂μ∂νgαβ + · · ·− 1
2

(
∂αHβ +∂βHα

)
, (4.32)

where again the dots denote terms only involving the metric and its first derivative.
The introduction of the auxiliary gauge functions Hα thus preserves the wave-like
principal part of the Einstein equations for arbitrary gauge choices.

As yet, no simple geometric interpretation of the Hα analogous to that of lapse
α and shift β i has been found, but the two sets of gauge functions are connected via
the differential relations [226]

Hμnμ = −K − 1
α2

(
∂tα−β i∂iα

)
, (4.33)

⊥i
μHμ =

1
α
γ ik∂kα+

1
α2

(
∂tβ i −β k∂kβ i

)
− γmnΓ i

mn. (4.34)

Just as lapse and shift need to be specified in addition to the evolution of the
BSSN equations, the functions Hα need to be specified by the user in the GHG
system. In analogy to the introduction of the variables Γ̃ i in the BSSN system in
Eq. (4.23), the definition (4.31) of Hα takes on the role of an auxiliary constraint
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Cα = Hα −Γ μ
μα +gμν∂μgνα . (4.35)

While this constraint is propagated in the continuum limit by the evolution equa-
tions in the same way as the Hamiltonian and momentum constraints, this can
become problematic in numerical simulations, where constraints will always be vi-
olated due to numerical inaccuracies. If these constraint violations grow without
control, they may give rise to numerical instabilities.

We have already seen, how the addition of the constraint to the right-hand sides
of the evolution equations can cure numerical instabilities in the case of the BSSN
equation (4.28) for the variable Γ̃ i. A similar cure using the constraint Cα as sug-
gested by Gundlach et al. [144] turned out to be an important ingredient in Preto-
rius’ first simulation of a black-hole binary through inspiral and merger [227]. These
cases represent good examples of the intricacies involved in numerically evolving
the Einstein equations.

4.3.2 Gauge Conditions

We have seen in the previous sections that the Einstein equations do not predict the
evolution of the gauge variables α and β i in the BSSN system or Hα in the gener-
alized harmonic formulation. Instead, these functions are specified by the user and
represent the coordinate freedom of general relativity. Indeed, any choice for these
functions is guaranteed not to affect the physical properties of the system under in-
vestigation. If the choice of gauge has no impact on the physics of the system, one
may wonder why it is necessary to discuss gauge conditions at all. The reason is that
the choice of gauge does have a strong impact on the performance and stability of a
numerical code. A simple example to illustrate this problem arises in evolutions of
a single Schwarzschild black hole [253]: A simulation starting on a time-symmetric
hypersurface using geodesic slicing, i.e., α = 1 everywhere, in combination with
vanishing shift will hit the singularity after a short coordinate time of Δ t = πM,
where M is the mass of the Schwarzschild hole. Because of the divergent nature of
the metric components at the singularity, a computer is not capable of represent-
ing the singularity using numbers and instead produces “non-assigned-numbers” at
some grid-points. These quickly swamp the entire computational grid and render
the entire simulation useless.

A common strategy to avoid this problem is to reduce the lapse function α as the
hypersurfaces get closer to a singularity [9, 182, 253]. The corresponding slowdown
in the advance of proper time “bends” the hypersurfaces around the singularity. Such
singularity avoiding slicings are frequently used in numerical codes. A potential
danger arising out of this procedure, however, is the so-called slice stretching (see,
for example, Sect. V B in [18]). Whereas the advance of proper time at points xi

close to the black-hole singularity is slowed down, points further away from the
black hole advance almost normally, i.e., with α ≈ 1. As the evolution proceeds,
these differences accumulate and eventually neighboring points on the numerical
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grid represent spacetime events far away from each other. Unless the shift vector is
carefully chosen to counteract this effect, this leads to resolution problems near the
black hole and gives rise to numerical instabilities.

The detailed study of the impact of gauge conditions and the reasons why some
conditions work so much better than others are still subject to ongoing research and
there remain many questions, in particular in connection with the shift vector. To
date, the choice of gauge conditions in numerical codes has been motivated by the
avoidance of singularities and slice stretching, but fail-safe recipes for their deriva-
tion are currently not known. Instead, the selection of gauge conditions is based on
a combination of educated guessing and empirical testing in black-hole simulations.

Gauge conditions used in early numerical simulations were inspired by geomet-
rical ideas. The maximal slicing condition K = 0 derives its name from the fact that
the 3D volume of spatial hypersurfaces obeying this condition is maximal [253].
This condition leads to an elliptic equation for the lapse function and is therefore
computationally expensive and non-trivial to implement. Similarly, the minimiza-
tion of the strain (cf. Eq. (4.5) of [253]) leads to an elliptic condition for the shift
vector. To the authors knowledge, these gauge conditions have not yet been imple-
mented in more recent simulations of black-hole mergers, so that it remains unclear,
to what extent the instabilities encountered in early simulations are based on this
choice of gauge. In any case, however, maximal slicing and the minimal distortion
shift form the basis of many modified gauge conditions employed in the course of
the following decades.

A remarkable simplification of the implementation of gauge conditions like max-
imal slicing is the idea of driver conditions [7, 9, 41]. Here, the elliptic equation is
replaced by a parabolic or hyperbolic equation which drives the gauge ever closer to
an equilibrium state similar to the equation of heat conduction. The key numerical
advantage is that such evolution equations are substantially easier to implement than
the solving of elliptic equations.

The idea of driver conditions was particularly appealing for stationary or quasi-
stationary spacetimes and has commonly been used for puncture-type initial data
(see Sect. 4.3.3 below). By using co-moving or co-rotating coordinates, most of the
black-hole dynamics can be absorbed in the coordinates and the spacetime vari-
ables show little actual change in coordinate time [9, 11, 80, 116, 282]. The most
prominent conditions are the “1+log” slicing

∂tα = −2αK (4.36)

and a second order in time Γ -driver condition for the shift. Different groups use
slightly different Γ -driver conditions. For example, the version reported in [11] is

∂tβ i =
3
4
α pψ−n

BL Bi, (4.37)

∂tB
i = ∂tΓ̃ i −ηβ i, (4.38)
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with parameter choices p = 1 or 2, n = 2 or 4, and η ∈ [2,5]. In these simulations,
the conformal factor is split into an analytic part ψBL of the Brill–Lindquist solution
and a regular remainder (see, for example, Sect. IV C of [9]).

Gauge conditions were studied in a more general way by Bona and Massó [60]
(for further discussion see also [8] and references therein). The above-mentioned
harmonic gauge as well as the driver conditions are special cases of the Bona-Massó
family of gauge conditions [60]. This general class of gauge conditions has been
used in various analytic studies to investigate singularity avoidance and the forma-
tion of gauge shocks [10, 12, 232].

While these ingredients still form a major part of the current generation of nu-
merical codes, the simulation of black-hole binaries through merger has so far only
been successfully accomplished after abandoning the idea of co-rotating coordinates
and instead allowing the black holes to move throughout the computational domain.
The first inspiral and merger was obtained by Pretorius [227] who used the general-
ization of the harmonic formulation described in the previous section. Specifically,
he constructed his gauge by evolving the gauge functions according to

�Ht = −ξ1
α−1
αη +ξ2nν∂νHt , (4.39)

Hi = 0. (4.40)

A few months after Pretorius’ breakthrough, the relativity groups of the University
of Brownsville and NASA Goddard independently discovered an evolution method
now commonly referred to as the moving-puncture approach [34, 94]. In contrast to
previous puncture simulations, the conformal factor is not decomposed into an ana-
lytically known part plus a regular piece and is instead evolved as a single quantity.
In combination with modifications of the “1+log” slicing and the Γ -driver condi-
tion which allow the black holes to move across the computational domain they
thus obtained a remarkably straightforward technique for evolving black-hole bina-
ries. Several groups have now developed codes using this moving-puncture method.
All codes use the modified “1+log” slicing condition

∂tα = β i∂iα−2αK, (4.41)

but they differ in the modifications applied to the Γ̃ -driver condition for the shift
vector. A sample of the exact gauge conditions reported by various groups is given
as follows

Code Reference

UTB [94] ∂tβ i = Bi, ∂t Bi = 3
4∂tΓ̃ i −ηBi,

Goddard [34] ∂tβ i = 3
4αBi, ∂t Bi = ∂0Γ̃ i −ηBi,

PSU [156] ∂tβ i = 3
4αBi, ∂t Bi = ∂0Γ̃ i −ηBi,

LEAN [257] ∂tβ i = Bi, ∂t Bi = ∂tΓ̃ i −ηBi,
BAM [81] ∂0β i = 3

4 Bi, ∂0Bi = ∂0Γ̃ i −ηBi,
AEI [34] ∂tβ i = 3

4αBi, ∂t Bi = ∂0Γ̃ i −ηBi,
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where ∂0 = ∂t − β i∂i. The free parameter η has an influence on the eventual co-
ordinate radius of the black holes [81] and typical choices for this parameter are
in the range 0.5 ≤ η ≤ 2 with no significant impact on the quality of the simu-
lations except for instabilities arising at outer refinement boundaries observed in
some cases for large values of η (cf. [258]). A more detailed analysis of different
gauge conditions in moving-puncture evolutions of black-hole binary spacetimes is
given in [267], but the general picture appears to be that all of the above conditions
provide binary simulations of comparable quality.

4.3.3 Initial Data

We have so far discussed the differential equations determining the time evolution
of the spacetime hypersurfaces. In order to start an evolution, however, we first
need to construct an initial data set. This task confronts us with two problems. First,
the initial data need to satisfy the Hamiltonian and momentum constraints (4.19),
(4.20). The second problem is that the initial data set must represent a snapshot of an
astrophysically realistic system. The construction of initial data is an entire branch
of research in numerical relativity and we cannot cover all aspects of this work in
this report. For a more comprehensive summary of the initial data calculation we
refer the reader to Cook’s review article [107].

Most of the work on solving the constraints is based on the York–Lichnerowicz
split [182, 274–277], which rearranges the degrees of freedom via a conformal
rescaling and the split of the extrinsic curvature into its trace and a tracefree part
according to

γi j = ψ4γ̃i j, (4.42)

Ki j = Ai j +
1
3
γi jK. (4.43)

It turns out to be convenient to further decompose the tracefree part of the ex-
trinsic curvature into a longitudinal and a transverse part. Two approaches to this
decomposition have been used. In the physical traceless decomposition [213–215],
this procedure is applied directly to the traceless part of the extrinsic curvature Ai j,
in the conformal traceless decomposition [277, 278], it is applied to a conformally
rescaled version

Ai j = ψ−10Ãi j or Ai j = ψ−2Ãi j. (4.44)

Both approaches eventually require us to specify the conformal metric γ̃i j, the
trace of the extrinsic curvature K and the symmetric transverse tracefree part of the
extrinsic curvature. The four constraint equations are solved with these freely spec-
ified functions and provide solutions for the conformal factor ψ and the potential
of the longitudinal part of the extrinsic curvature. The detailed equations can be
found in Sect. 2.2 of [107]. A particularly useful property of these splits is that the
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momentum constraint decouples from the Hamiltonian constraint if K is a constant.
This simplification is frequently used in the practical calculation of initial data sets.

More recently, an alternative approach called the thin-sandwich decomposition
[280] has become a very popular alternative to this approach. Loosely speaking, the
key idea here is to replace the extrinsic curvature in terms of the time derivative of
the metric using the evolution equation (4.14) for the metric. Eventually, one freely
specifies the conformal metric γ̃i j, its time derivative, the trace of the extrinsic curva-
ture, and a conformally rescaled version of the lapse function. Solving the constraint
provides us not only with the extrinsic curvature and the three-metric on the initial
slice, but also with a lapse function and shift vector. The advantage of this approach
is that we can directly impose a condition on the time derivative of the three-metric
and obtain lapse and shift corresponding to this condition. This is particularly useful
in the construction of quasi-equilibrium data, as, for example, a circularized binary
in co-rotating coordinates, where the time derivative of the metric is assumed to
vanish. A more detailed description of the thin-sandwich approach is presented in
Sect. 2.3 of [107].

Having obtained the framework which facilitates an efficient solving of the con-
straint equations, there remains the second difficulty we mentioned at the beginning
of this section. How do we obtain realistic black-hole initial data? There are two
main approaches to this problem. First we discuss the generalization of analytically
known single black-hole solutions.

As one might expect, the approaches discussed above provide relatively simple
methods to derive the Schwarzschild solution. If, for example, we assume a time-
symmetric initial data set, i.e., Ki j = 0, the momentum constraints can be shown to
be trivially satisfied and the Hamiltonian constraint becomes

∇̄2ψ = 0, (4.45)

where ∇̄ is the flat space Laplace operator. The simplest solution to this equation is

ψ = 1+
M
2r

, (4.46)

which gives us the Schwarzschild solution in isotropic coordinates. This solution can
be generalized straightforwardly to any number of black holes. Indeed, the linearity
of the Hamiltonian constraint (4.45) immediately allows us to superpose solutions
to obtain [75, 203]

ψ =
N

∑
i=1

Mi

|r− ri|
. (4.47)

These are known as Brill–Lindquist initial data and represent N holes at posi-
tions ri. It can be shown that each of the poles in these solutions corresponds to
spatial infinity in an asymptotically flat hypersurface, that is, each hole provides a
connection to a different universe, so that we have in total N +1 universes. A similar
solution where all holes provide a connection between the same two asymptotically
flat universes has been found by Misner [204].
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Both, the Brill–Lindquist and the Misner data, represent N black holes at the
moment of time symmetry, that is, black holes with vanishing linear and angular
momentum. It is a remarkable property that analytic solutions for the momentum
constraints can even be found in the generalized case of Misner data with non-
vanishing momenta [69]. These data are commonly referred to as Bowen–York data
and start again with the simplifying assumption of conformal and asymptotic flat-
ness as well as maximal slicing K = 0. With the analytic solution of the momentum
constraints, there merely remains the task of solving numerically the Hamiltonian
constraint for the conformal factor. Even more remarkable, the total linear momenta
Pi and spins Si associated with the individual holes in the limit of isolated holes
appear as explicit parameters in the analytic Bowen–York extrinsic curvature and
thus provide us with a straightforward physical interpretation of the initial data. The
total energy of the spacetime is also obtained relatively straightforwardly from the
1/r falloff term of the conformal factor as r →∞. The corresponding generalization
to Brill–Lindquist data was developed by Brandt and Brügmann [73]. These data
are known as puncture data and form the starting point for most of the so-called
“moving puncture simulations” mentioned above.

In spite of the great popularity of these initial data, there are some concerns
associated with the underlying simplifying assumptions. First, it has been shown
that there are no spatial hypersurfaces of the Kerr spacetime with non-zero spin
parameter for which the three-metric can be written in a conformally flat way [133].
It turns out that the initial data thus calculated represent the snapshot of a rotating
black hole plus a non-vanishing gravitational wave content. We will return to this
spurious gravitational radiation further below. At this point, we merely note that
all binary-black-hole data successfully evolved to date contain such spurious initial
radiation. In comparison with the merger waveform, however, this spurious or junk
radiation is rather low in amplitude and appears to represent a smaller problem than
anticipated, at least in the case of non-or slowly rotating black holes. Alternative
non-conformally flat black hole initial data based on generalizations of the single
hole Kerr–Schild solution [168, 169] have been investigated in initial data studies as
well as numerical evolutions [67, 74, 193, 194, 196, 256, 257].

A popular alternative to puncture-type initial data is often referred to as “ex-
cision data”. The idea here is to incorporate black holes in the form of horizon
boundary conditions into the initial data. A black hole is defined by the presence
of an event horizon, that is, a boundary which defines a region of spacetime from
which null geodesics cannot extend all the way to null infinity. A more convenient
framework encapsulating horizons in numerical relativity is that of apparent and iso-
lated horizons ([28, 64, 117, 139] and references therein) which provides bound-
ary conditions for the metric and extrinsic curvature components at the horizon.
These conditions are particularly convenient to apply in combination with the quasi-
equilibrium assumption and, thus, the thin-sandwich approach. Black-hole data have
been constructed along these lines in [23, 108–110, 166, 223] and form the starting
point for most of the simulations performed with the generalized harmonic formu-
lation [39, 70, 86, 224].
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We conclude this discussion with a counting of the physical parameters of a gen-
eral black-hole binary. First, we need to fix the total scale of our problem which
corresponds to fixing the total ADM mass of the system. Once we have fixed the
scale, six parameters are required to determine the spins S1 and S2 of the two holes
and one parameter for the mass ratio q = M1/M2. In general we also need to take
into account the eccentricity of the orbits. The emission of gravitational waves has
the effect of circularizing the orbit [221], however, so that for many purposes, it is
sufficient to consider quasi-circular orbits.1 In Most cases, we therefore have seven
physical parameters (see, however, [158, 258] and references therein for investiga-
tions of eccentric binaries and their relevance in astrophysics). In practice, current
numerical codes are able to evolve a binary for at most a few tens of orbits at ac-
ceptable computational cost, so that we need to specify an initial separation of the
binary. This can be done, for example, in the form of a coordinate separation or
an initial orbital frequency. Constructing a quasi-circular orbit then requires the ac-
curate specification of the orbital angular momentum corresponding to a circular
orbit. Three methods have been used in the literature to minimize the eccentricity
of the initial configuration. The effective potential method [44, 106] is inspired by
Newtonian physics and starts with a fixed value of the orbital angular momentum.
It then varies the separation of the orbit and defines the quasi-circular configuration
as that which minimizes the binding energy of the binary. The second method is
based on the approximate stationarity of a circular binary in co-rotating coordinates.
Mathematically, this corresponds to the existence of an approximate helical Killing
vector which is used to impose the approximate symmetry of the binary under rota-
tions [138, 141, 264] (see also [265] for a sequence of parameters for quasi-circular
puncture initial data sets). Finally, the post-Newtonian formalism predicts the an-
gular momentum of a binary with given separation on a quasi-circular orbit (see,
formula (64) in [81] based on the 3PN accurate calculations in ADM-transverse-
traceless gauge of [111]).

A comparison of the three methods applied to a non-spinning, equal-mass bi-
nary starting about two orbits prior two merger is given in [81] and finds excellent
agreement between the resulting momentum parameters. The phase of the resulting
waveforms turns out to be rather sensitive to the initial parameters, however, so that
the three methods lead to notably different merger times. We will return to the is-
sue of residual eccentricity in the initial data below in Sect. 4.6.1 when we discuss
methods to further improve the initial momentum parameters.

4.3.4 Mesh Refinement and Outer Boundary Conditions

We now turn our attention to the more technical aspects of numerical simulations
of black-hole spacetimes. A major difficulty arises out of the presence of different
length scales in the spacetimes under consideration. The black-hole size is approxi-

1 The term ’quasi’ refers to the fact that the orbit is continuously shrinking because of the energy
loss of the system.
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mately given by the mass of the hole M. Gravitational waves, however, have wave-
lengths about one or two orders of magnitude larger and need to be extracted suf-
ficiently far away from the strong-field region, ideally in the wave zone. This wave
zone starts approximately at distances of 102 M. In order to avoid contaminations
from the outer boundary, the computational domain needs to be several times as
large as that value. With current computational resources, it is impossible to evolve
such large domains with the resolution required to resolve the steep gradients near
the black-hole horizons. The only solution to this problem is the use of mesh refine-
ment, that is, the use of different resolutions in different parts of the computational
domain. This applies both to the finite differencing codes and to the Caltech–Cornell
spectral code.

Mesh refinement has been made popular in numerical relativity by Choptuik who
thus obtained the required accuracy in his discovery of critical phenomena [104].
Because of the movement of black holes, it is not sufficient to use fixed mesh refine-
ment, where the regions of increased resolutions remain stationary in time. Mesh
refinement where the zones of refinement change in time is called adapted and gen-
erally measures the steepness of the gradients to determine what resolution is needed
in a particular region of the domain. The implementation of mesh-refinement in
black-hole evolutions does not require the full machinery of adapted mesh refine-
ment because it is relatively straightforward to locate black holes via their apparent
horizons and black holes are rigid objects and preserve their shape to a remarkable
degree. A common approach in the current generation of black-hole codes is the
so-called moving boxes method. That is, the computational grid consists of a nested
set of rectangular boxes with decreasing size and increasing resolution. A subset of
these boxes follows the black-hole motion and thus guarantees that sufficient res-
olution is maintained near the black holes. This is illustrated in Fig. 4.2 where the
black holes are represented by their apparent horizons (white hemispheres).

While mesh refinement is conceptually rather straightforward, it represents a
formidable book keeping exercise in general relativistic simulations and also a po-
tential source of instabilities. Indeed, it is often hard to generalize stability studies to
numerical techniques with mesh refinement and commonly the success of a method
is only established in practice by evolving black-hole data.

An alternative to mesh refinement is the use of coordinates which are “stretched”
further away from the black holes and thus result in an effectively lower resolu-
tion. These so-called “fish-eye” coordinates allow one to push the outer boundary to
larger radii at acceptable computational costs [32].

Fixed mesh refinement was first used in black-hole simulations by Brügmann
[78] in fixed form for a dynamically sliced Schwarzschild hole. Pretorius’ first
simulations of a black-hole inspiral and merger used mesh refinement based on a
modified Berger–Oliger [50] scheme (see [228, 229] for details). Further refine-
ment packages include CARPET [101, 242] which provides mesh refinement for
several codes [99, 156, 175, 257] using the CACTUS computational toolkit [89],
PARAMESH [189] used by the Goddard group [35], SAMRAI [237] which is used
by OPENGR [216], and Steven Liebling’s HAD [147, 183] used for mixed binary
evolutions in [14].
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Fig. 4.2 Illustration of mesh refinement in black hole simulations

A closely related topic concerns the specification of conditions at the outer
boundaries. A potential danger arising from outer boundary conditions is the vi-
olation of the constraints. Furthermore, it is not immediately clear, to what extent
a given set of boundary conditions preserves the hyperbolicity of the set of evolu-
tion equations. Several conditions ensuring the constraints and/or the hyperbolicity
have been suggested in the literature [91, 131, 132, 143, 173, 184, 240]. To our
knowledge, however, only that of [184] has been successfully used for black-hole
binary evolutions in [70, 224]. Pretorius [227, 229] instead uses a compactification
of the spacetime. In contrast to characteristic formulations where compactification
is natural and common, it inevitably implies a loss of resolution at sufficiently large
distances from the binary when applied to slices approaching spatial infinity. The
reason is simply that the characteristics, i.e., null geodesics are curves of constant
phase of gravitational waves, whereas space-like curves are not. Pretorius solves
this difficulty by using numerical dissipation in the outer parts of the computational
domain and thus avoids high-frequency noise.

All other codes use the relatively simple outgoing Sommerfeld condition; see,
for example, Sect. VI A of [9]. For the studies performed so far, this choice appears
to provide sufficient accuracy, provided the outer boundary is located at sufficiently
large distances from the strong-field sources. It remains to be seen to what extent
improvements will be needed in future studies.
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4.3.5 Singularity Treatment

A further complication in black-hole simulations normally not encountered in other
areas of computational physics is the presence of singular points in the spacetimes.
Two types of singularities can arise in general relativity; coordinate singularities, as,
for example, the famous r = 2M in the Schwarzschild metric, and physical singular-
ities. If the code encounters either of these, it will crash because metric components
will diverge at the singularities. We have already discussed this point in the context
of singularity avoiding slicings which slows down the evolution in the vicinity of
singular points.

An alternative to this approach has been suggested by Unruh as cited in [261]
and is based on the cosmic censorship conjecture which stipulates that there exist
no naked singularities. Instead, a singularity will always be surrounded by a horizon,
that is, a causal boundary that disconnects a region of spacetime from the exterior
in the sense that no information, not even light, can travel from the inner region to
the exterior. In consequence, the external spacetime is completely independent from
what is happening in the interior. It is possible therefore, to remove this interior part
containing the singularity from the computational domain and evolve exclusively
the exterior spacetime. This is graphically illustrated in Fig. 4.3, where the dots rep-
resent grid points and the circle the horizon. Points outside the horizon are evolved
normally (black dots). Inside the horizon there is a layer of boundary points (grey)
where data are commonly obtained from extrapolation from exterior points or using
one-sided derivatives. The inner points (white) are simply ignored, that is “excised”
from the numerical simulation.

y

x

Fig. 4.3 Illustration of black-hole excision
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Black-hole excision has been used in the 1990s using a technique called causal
differencing [17, 245]. More recent implementations in finite differencing codes
have been based on straightforward extrapolation. The so-called “simple excision”
method of Alcubierre and Brügmann [7] provided a remarkably straightforward
method to obtain long-term stable evolutions of single black holes and has also
been used in simulations of orbiting binaries in co-rotating coordinates [80, 116].
More general techniques accommodating moving black holes via dynamic excision
have been used in [74, 224, 226, 227, 249, 256]

An alternative method to handle the coordinate singularity inherent to puncture
data was the decomposition of the conformal factor. In the simulation, only the
regular piece was evolved. The recent “moving puncture” simulations differ from
that approach in that they evolve the entire conformal factor. One consequence is
that the nature of the coordinate singularity also changes its nature [77, 152] and
looses contact with the asymptotic spatial infinity. Given the finite numerical reso-
lution, however, these features inside the black-hole horizon are not resolved in a
numerical simulation, and the moving-puncture method appears to provide a kind
of automatic and natural excision.

Among the current generation of black-hole codes, explicit excision is imple-
mented in the generalized harmonic codes of Pretorius and the Caltech–Cornell
effort. The implementation in the spectral Caltech–Cornell code is special in the
sense that they use a so-called dual-coordinate frame to accommodate the motion of
the holes. Using two coordinate systems and transforming variables between these
systems avoid the necessity to move the excision region across the computational
domain; see [241] for details.

4.4 Diagnostics

Once we have successfully evolved a spacetime containing black holes, there still
remains the task of extracting physical information from the simulation. This pro-
cedure faces two major difficulties. First, a computer simulation only produces a
large set of numbers which represent coordinate-dependent quantities. We need to
construct physical, that is gauge invariant, combinations from these quantities. A
second problem is that not all physical concepts familiar from Newtonian physics
are well defined in general relativity. In particular, this applies to local quantities as,
for example, the energy contained in a particular region of spacetime. In the follow-
ing we will discuss all important quantities currently used in numerical relativity to
extract physical information from the simulations. For this purpose we assume that
all ADM variables are known in some part of the spacetime. These variables are
the lapse α , the shift β , the three-metric γi j, and the extrinsic curvature Ki j. These
variables can always be computed straightforwardly from the evolution variables,
even if we use a formulation not based on the ADM equations.
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4.4.1 Global Quantities

Global quantities provide us with information characterizing the entire spacetime.
They are usually defined by evaluating variables at spatial or null infinity. In most
contemporary numerical evolutions, the computational domain does not extend all
the way to infinity, so that we need to approximate global quantities by calculating
them at large but finite distances from the strong-field region near the black holes.

The total mass or energy of the spacetime is given by the so-called ADM mass
[25] which is obtained from the three-metric by the surface integral

MADM =
1

16π
lim
r→∞

∫
Sr

√
γγ i jγkl(∂ jγik −∂kγi j)dSl . (4.48)

Here γ is the determinant of the three-metric, Sr the coordinate sphere r = const,
n̂m the unit normal field on that sphere, and dSl = n̂ldθdφ with standard angular
coordinates θ and φ .

Similarly, the total linear and angular momentum of the spacetime can be calcu-
lated from (see e.g., [277])

Pi =
1

8π
lim
r→∞

∫
Sr

√
γ (Km

i −Kδm
i)dSm, (4.49)

Ji =
1

8π
εil

m lim
r→∞

∫
Sr

√
γxl (Kn

m −Kδ n
m)dSn. (4.50)

We emphasize that all these quantities are by construction time independent. In
contrast, the Bondi-mass [66] is evaluated at null infinity, thus takes into account
the radiation of energy to null infinity in the form of gravitational waves and varies
with retarded time. It is a natural diagnostic tool in characteristic formulations but
not directly available in 3+1 evolutions.

4.4.2 Local Quantities

We have already mentioned that it is often impossible to define local concepts of
energy and momenta. In the case of black holes, however, it is possible to use the
concept of horizons [28] to define mass and spin associated with the horizon and
thus with the black hole. Imagine for that purpose a 3D hypersurface Σ and a closed
2D surface S embedded in Σ (see for example Fig. 1 in [117]). On each point of
S one can define in and outgoing null vectors n̂α and �α . The expansion of in and
outgoing light cones is given in terms of these null vectors by

θ(�) = qαβ∇α�β , θ(n̂) = qαβ∇α n̂β , (4.51)

where qαβ is the induced two-metric on the surface S. A marginally trapped sur-
face is defined by the condition that the outgoing expansion vanishes θ(�) = 0 and
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the ingoing expansion satisfies θ(n̂) < 0. Loosely speaking, this means that all light
cones on the trapped surface are tilted inwards to such an extent that light rays
cannot escape outwards. In general, a black-hole spacetime has more than one
marginally trapped surface and the apparent horizon is defined as the outermost
marginally trapped surface.

The main task in a numerical simulation is to locate surfaces S with vanishing
expansion θ(�) = 0. Various apparent horizon finders have been developed by the
numerical relativity community. For more details on the numerical methods to locate
the apparent horizon and the physical interpretation of the horizon properties the
reader is referred to [22, 28, 42, 117, 163, 177, 262] and references therein.

For the discussion in the remainder of the work, the most important quantity is
the irreducible mass of the horizon which is defined in terms of the horizon area by

Mirr =

√
AAH

16π
. (4.52)

In the limit of an isolated hole, i.e. a black hole whose interaction with other holes
or matter sources is negligible, one can use the world tube of apparent horizons,
the so-called isolated horizon, to define the angular momentum associated with the
horizon

J(i) =
1

8π

∮
S
φm

(i)R
nKmndS, (4.53)

where Rn is the outgoing unit norm field on S and φm
(i) is the Killing vector associated

with the rotational symmetry and the index (i) labels the axis of the rotation, e.g., the
x, y, or z component of the spin (see [28] for more details). Finally, we can use
the spin of the black-hole to calculate the total black-hole mass M according to
Christodoulou’s formula [105]

M2 = M2
irr +

J2

4M2
irr

. (4.54)

In the limit of a stationary spacetime with a single black hole, this mass corre-
sponds to the ADM mass. In spacetimes with a black-hole binary we can use the
individual black hole masses and the ADM mass to define the binding energy

Eb = MADM −M1 −M2. (4.55)

This definition assumes, however, that there are no other forms of energy present
in the spacetime. In numerical practice, this condition is normally violated because
initial data sets contain some spurious gravitational radiation in addition to the black
holes. In many cases, however, this spurious energy content turns out to be small
compared with the right-hand side of Eq. (4.55) and the resulting error in the binding
energy is small.
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4.4.3 Gravitational Waves

Arguably the most important information resulting from a simulation of black holes
is the amount and structure of the gravitational waves emitted in the course of the
inspiral and merger. The gravitational wave signal enables us to calculate the loss of
energy and linear and angular momentum of the system and also predicts the strain
h+,× exerted upon a distant gravitational wave detector.

The most common method to extract gravitational waves from a numerical simu-
lation is based on the Newman Penrose formalism [211]. Specifically, one defines a
tetrad �α , n̂α , mα and m̄α where n̂ and � are ingoing and outgoing null vectors, and
m is a complex linear combination constructed out of two spatial unit vectors such
that

− � · n̂ = 1 = m · m̄ (4.56)

and all other inner products vanish.
The Newman–Penrose scalar Ψ4 is defined in terms of this tetrad and the Weyl

tensor as
Ψ4 = Cαβγδ n̂α m̄β n̂γ m̄δ . (4.57)

In 3+1 simulations, the Weyl tensor is obtained from the fundamental forms ac-
cording to the Gauss–Codacci equations (4.15), (4.16), and (4.17). In practice,Ψ4 is
calculated on a sphere of constant coordinate radius rex and is therefore a function
of the angular coordinates θ , φ , and the time t.

It can be shown that under a tetrad rotation which leaves � and n unchanged but
rotates m, m̄ through an angle ϑ , the Newman–Penrose scalar Ψ4 transforms into
e−2iϑΨ4, that is as a spin-weight −2 field. It is therefore convenient to decompose
Ψ4 in a series of spin-weight −2 spherical harmonics Y−2

�m , where � = 2, ... and m =
−�, ..., � denote the multipole indices [263]. At extraction radius rex we can describe
the gravitational wave signal in the form of mode coefficients ψ�m(t) of the series
expansion

Ψ4 =∑
�,m

ψ�m(t)Y−2
�m (θ ,φ). (4.58)

It turns out that the complete signal is often dominated by a small number of
modes, normally including the quadrupole moments � = 2. It is for this reason that
gravitational waveforms are often presented in the form of 1D plots showing some
ψ�m(t).

In order to ensure thatΨ4 is a measure for the outgoing gravitational waves, the
tetrad has to be chosen with care. In the case of spacetimes perturbatively close to
the Kerr-solution, the appropriate choice is the Kinnersley tetrad [174]. In general
numerical simulations, however, it is not clear how one can unambiguously identify
the Kinnersley tetrad. Instead, one commonly constructs the tetrad from the time-
like unit normal field n and three spatial triad vectors u, v, and w according to
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�α =
1√
2

(nα +uα) , (4.59)

n̂α =
1√
2

(nα −uα) , (4.60)

mα =
1√
2

(vα + iwα) . (4.61)

The triad vectors, in turn, are constructed by applying a Gram–Schmidt orthogo-
nalization to the coordinate triad

ui = [x, y, z], (4.62)

vi = [xz, yz,−x2 − y2], (4.63)

wi = εi
mnvmwn, (4.64)

with the 3D Levi-Civita tensor εi
mn. There remains some freedom in starting the

orthogonalization with u, v, or w and different implementations have been used by
the community. So far, the choice does not seem to have a notable impact on the
resulting waveforms.

The approximative character of the tetrad makes it necessary to extract gravi-
tational waves at a sufficiently large distance from the strong-field region near the
black holes. In practice, extraction radii of the order of 100 MADM are used in most
current simulations. The uncertainties arising from the use of finite extraction radii
have been estimated in [70]. A more general discussion of various issues in the
standard wave extraction procedure is given in [180]. Methods for approximating
the Kinnersley tetrad more efficiently have been studied in [48, 208–210].

The energy and linear and angular momentum radiated in the form of gravita-
tional waves are given in terms of the Newman–Penrose scalarΨ4 via the integrals
(see, e.g., [92]) are

dE
dt

= lim
r→∞

(
r2

16π

∫
Ω

∣∣∣∣
∫ t

−∞
Ψ4dt̃

∣∣∣∣
2

dΩ

)
, (4.65)

dPi

dt
= − lim

r→∞

(
r2

16π

∫
Ω

�i

∣∣∣∣
∫ t

−∞
Ψ4dt̃

∣∣∣∣
2

dΩ

)
, (4.66)

dJz

dt
= − lim

r→∞

{
r2

16π
Re

[∫
Ω

(
∂φ

∫ t

−∞
Ψ4dt̃

)(∫ t

−∞

∫ t̂

−∞
Ψ̄4dt̂dt̃

)]
dΩ

}
, (4.67)

where �i = [−sinθ cosφ , −sinθ cossinφ , −cosθ ]. In practice, the integrals are
evaluated on coordinate spheres with radius rex where one also calculates Ψ4. The
errors arising from the use of finite radii can be estimated by calculating the quan-
tities at different extraction radii and studying the variation ofΨ4 and the momenta
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analogous to a convergence study of the code’s performance at different grid reso-
lutions. The uncertainties depend on the details of the simulation, but in general are
of the order of a few percent or less for extraction radii of the order of 102 MADM

(see, e.g., [257]).
An alternative method for extracting gravitational waves is based on the Zerilli–

Moncrief formalism [206, 281] and provides the GW signal in the form of two gauge
invariant perturbation functions. More details about this method and applications
can be found in [2, 3, 175, 256] and references therein.

4.5 A Brief History of Black-Hole Simulations

Attempts at solving the Einstein equations numerically date back to the 1960s and
1970s and the pioneering work by Hahn, Lindquist, Eppley, Smarr, and cowork-
ers [119, 149, 250–252]. These early attempts used the ADM formulation of the
Einstein equations and focused on axisymmetric spacetimes and were therefore re-
stricted to head-on collisions of black holes. The resulting simulations turned out
to be relatively short-lived, however, compared with the dynamic timescale of the
problem. Considering that modern supercomputers are just about powerful enough
to facilitate numerical simulations of black-hole binaries, it is clear, that the early
numerical studies were inhibited by the computational resources available at the
time.

It was therefore more than a decade later, before the significant increase in com-
puter power led to a systematic reinvestigation of the problem in the framework of
the “Grand Challenge” (see e.g., [16, 19–21, 29]). These studies predicted a total
radiation of the order of 10−3MADM emitted in the head-on collision of two black
holes [19]. Simulations of unequal-mass binaries revealed a gravitational recoil or
kick of up to 10–20 km/s [21]. Simulations were also performed for the first time in
three dimensions [18]. In spite of this progress, however, the fundamental difficul-
ties with instabilities in the numerical simulations were not overcome. After the end
of the Grand Challenge, a joined effort by the universities of Pittsburgh, Penn State,
and Texas investigated grazing collisions using the black-hole excision method [74].

The 1990s also saw the first investigation of alternative ways to write the Einstein
equations. Bona and Massó wrote the evolution equations in the form of balance
laws [59–61], not dissimilar to the way the equations of hydrodynamics are com-
monly implemented numerically. Even though their efforts did not overcome the
stability problems, the idea of using alternative formulations was gradually adopted
by other groups and eventually provided a major ingredient in solving the binary-
black-hole problem (cf. Sect. 4.3.1). Most importantly, test simulations using the
BSSN formulation [43, 246] demonstrated improved stability properties.

The BSSN system also played an important role in the studies of the numerical
relativity group of the Albert Einstein Institute in Potsdam starting in the late 1990s.
These efforts used initial data of puncture type, factored out the Brill–Lindquist
conformal factor during the evolution, and employed coordinate conditions which



154 U. Sperhake

keep the black hole centers fixed on the numerical grid. These studies resulted in the
first grazing collisions of black holes [79], the first use of mesh refinement in black-
hole simulations [78] and the first long-term stable simulations of black-hole head-
on collisions [9] as well as single black-hole spacetimes [7]. A guiding principle
for many of these studies was to absorb as much as possible the dynamics of the
system in the coordinates and use gauge conditions which drive the system into
quasi-stationarity. Eventually, this approach lead to simulations of orbiting binaries
on timescales similar to the orbital period [80, 116].

In view of the persistent stability problems, the Lazarus project attempted to use
fully non-linear evolutions until shortly before the merger of the binary, but then
match the evolution to a perturbative treatment (see [30, 31] and references therein).
This approach facilitated the evolution of relatively short, plunging configurations
and provided estimates on the gravitational recoil [93] as well as the first results on
spinning binaries [33].

By early 2005, the combined methods of the BSSN formulation, improved
gauge conditions, and/or black-hole excision allowed the community to study
head-on collisions of black holes using mesh refinement, more accurate fourth-
order numerical schemes, and/or non-conformally flat initial data of Kerr–Schild
type [125, 256, 282].

The year 2005 also saw the eventual breakthrough, when Pretorius used the
remarkable combination of the generalized harmonic formulation of the Einstein
equations, implicit numerical schemes, and spatial compactification to provide the
first simulation of a binary through merger with accurate gravitational waveforms
[226]. About half a year later, the groups at Brownsville and Goddard independently
discovered a method to evolve and merge black-hole binaries of puncture type using
a relatively straightforward to implement generalization of previous puncture evo-
lutions with the BSSN system [34, 94]. Retrospectively, it is quite remarkable that
these two notably different methods have provided within a few months a success-
ful path to the “holy grail of numerical relativity”. As of 2008, there exist about ten
independent numerical codes of one or the other method which have been demon-
strated to produce stable and convergent simulations of at least some types of black-
hole binary spacetimes [35, 81, 95, 120, 156, 175, 229, 241, 257].

In the next section we will summarize the results obtained with these codes in
the course of the last 21/2 years.

4.6 Properties of Black-Hole Binaries

Following the breakthroughs of 2005, the numerical relativity community has gen-
erated a wealth of results on black-hole binary spacetimes. Before we discuss these
results in more detail, we need to comment on the scale invariance of black-hole
spacetimes. In Sect. 4.3.3 we have summarized the physical parameters of generic
black-hole initial configurations. In particular, we noted that the total ADM mass
of the system merely represents a scaling factor in a numerical simulation. That is,
expressed in units of the ADM mass, all quantities of a simulation have the same
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numerical value irrespective of the magnitude of the ADM mass itself. A single
numerical simulation thus represents a one-parameter family of solutions. We em-
phasize, however, that the total mass of the system is very important from a gravita-
tional wave detector’s point of view. Suppose, a characteristic frequency is given by
ω =C/MADM, with C some constant. The maximal sensitivity of the LIGO detector,
for example, is located in a window around 150 Hz. The ADM mass of the system
will determine the systems characteristic frequency and thus where this frequency is
located in the LIGO sensitivity range. For the case of a binary of two non-spinning
holes of mass 5 M� each, for example, it is the earlier inspiral phase which falls into
the maximum sensitivity range of LIGO, whereas for a system of two black holes
of mass 50 M�, it is the merger and ringdown signal. This is illustrated in Fig. 4
of [218]. From the gravitational wave data analysis point of view, there are also pa-
rameters which describe the relative location of the black-hole binary relative to the
earth: the source’s position on the sky and its inclination relative to the plane of the
detector. These parameters are not related to the physical properties of the binary,
however, and need not concern us in this work.

4.6.1 Non-spinning, Equal-Mass Binaries

The inspiral of two non-spinning black holes of equal mass represents the simplest
binary configuration and has been the first to be evolved successfully through inspi-
ral, merger, and ringdown [34, 94, 227]. This scenario is currently the best under-
stood type of binary systems and we will use it here to also illustrate the fundamen-
tal characteristics of a black-hole inspiral and merger and the resulting waveform
patterns.

In realistic astrophysical scenarios, the binary will complete thousands of orbits
or more before coalescence. Unless there is significant interaction with third party
objects, the binary will loose all orbital eccentricity due to the circularizing effect
of gravitational wave emission [221]. Numerical simulations are currently able to
simulate only up to about 15 orbits by which time most binaries are expected to
be in quasi-circular configuration. In order to accurately model such systems, nu-
merical simulations need to start from initial data which represent as closely as
possible a snapshot of a binary in quasi-circular inspiral. In practice, this has com-
monly been approximated in one of the three methods we discussed in Sect. 4.3.3.
All of these methods, however, result in measurable eccentricity in the orbits (see,
for example, [37, 86, 165, 224]). This small residual eccentricity is a major source
of uncertainty in the comparison of numerical with post-Newtonian results [70] and
improved methods to further reduce the eccentricity have been designed using it-
erative procedures [70, 224] or the integration of post-Newtonian equations over a
larger number of orbits [165].

For illustration of the binary inspiral, we show in the upper panel of Fig. 4.4
the puncture trajectories of the holes as obtained for the simulation of a relatively
short inspiral starting from the so-called R1-configuration (see Table I of [35]). For
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Fig. 4.4 Upper panel: Trajectories of the two holes in the inspiral of two equal mass, non-spinning
holes starting from a coordinate separation d/M = 6.514 M (see entry R1 in Table I of [35]).
Lower panel: The � = 2, m = 2 mode of the Newman–Penrose scalarΨ4 extracted from the same
simulation at radius rex = 60 M

trajectories containing more orbits, see, for example, Fig. III of [70]. One of the
most remarkable features of both moving punctures and evolutions using the gen-
eralized harmonic formulation is the similarity of the black-hole coordinate trajec-
tories with the intuitively expected picture. Bearing in mind the gauge dependence
of the trajectories, this result was by no means to be expected; indeed, the frequen-
cies derived from the trajectories agree remarkably well with those derived from
the gravitational waveforms [86]. Figure 4.4 also illustrates the relatively smooth
transition from the inspiral to the ringdown. A more careful investigation reveals
that the merger only lasts for about 0.5–0.75 orbits [86] and does not exhibit strange
features in the waveforms.

A more fundamental question concerns the dependence of the results on the
choice of initial data. Orbital simulations starting from Cook–Pfeiffer excision and
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puncture data have been compared in [39] and showed qualitatively good agree-
ment. A more detailed comparison is inhibited by residual spin in the excision
data, though. Such problems are not present in comparisons of head-on collisions
of black-hole binaries. The comparison of collisions starting from Brill–Lindquist,
Misner, and superposed Kerr–Schild data exhibits good quantitative agreement
[257]. Minor differences in the evolutions of Kerr–Schild data might be attributed
to spurious radiation present in these data [57]. In summary, these results are reas-
suring, though more detailed comparisons will be needed in the future.

All simulations of equal mass, non-spinning binaries agree rather well on the
total radiated energy and angular momentum in the course of the inspiral, merger,
and ringdown. About 3.5% of the total mass and about 21% of the total angular mo-
mentum of the binary system are carried away in the form of gravitational waves.
Furthermore, the radiation is dominated by the � = 2, m = ±2 quadrupole contribu-
tion which carries >98% of the total radiated energy [35, 52, 81, 95, 257]. This is
illustrated in the upper panel of Fig. 4.4 where we show the � = 2, m = 2 mode as
well as the next strongest mode � = 4, m = 4. From Eq. (4.65) we see that the energy
scales with the square of the wave amplitude and it becomes clear that only a small
fraction of the energy is contained in � = 4, m = 4. All other modes are negligible
compared with these two. Finally, most of the energy and angular momentum is ra-
diated in the final plunge and merger of the binary, whereas contributions from the
early inspiral phase are rather small (see, for example, Fig. 11 in [81]).

The dominant role of the quadrupole radiation is no surprise and directly fol-
lows from post-Newtonian studies (see [56] and references therein). Indeed, most
of the inspiral phase up to about the last few orbits is rather well described by the
post-Newtonian approximation and one of the most important question facing the
community right now is to determine, how close to the merger the PN approxima-
tion breaks down. For this comparison it is often convenient to split the complex
Newman–Penrose scalarΨ4 into phase and amplitude

Ψ4(t) = A(t)eiφ(t). (4.68)

Sometimes, the wave signal is also expressed in terms of the gravitational wave
polarizations + and × related toΨ4 according to

Ψ4 = ∂t∂t(h+ − ih×) (4.69)

(see, e.g., [52] for a discussion of the constants of integration) and the amplitude
phase decomposition is applied to h+ and h×. The Newman–Penrose scalar is the
standard choice of describing gravitational waves in numerical relativity, whereas
h+ and h× are more directly related to the displacements in gravitational wave de-
tectors and thus more popular in GW data analysis. For the comparison between
numerical and post-Newtonian results, the choice of variables is not important, how-
ever.

First comparisons between numerical and PN results demonstrated that the PN-
adiabatic model agrees better with the numerical results at larger BH-separations,
but gives reasonable results even when extrapolated to the formation of a common
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apparent horizon [86]. Their study also found the highest 3PN and 3.5PN order
to result in the best agreement with the numerical data. A study using numerical
waveforms covering the last 14 cycles of the inspiral was presented in [37, 38]
and revealed an accumulated phase discrepancy of about 1 rad until shortly be-
fore the merger. Subsequent numerical simulations using improved initial data and
higher order finite differencing or spectral methods resulted in even better agree-
ment [70, 153]. The most comprehensive comparison performed by the Caltech
group [70] showed a phase difference between numerical and various PN wave-
forms of about 0.1 rad. The particularly good agreement observed for the Taylor T4
approximant result appears to be more coincidental, as it is significantly smaller than
the discrepancies among the different PN results. Comparisons with post-Newtonian
results uniformly found higher order amplitude corrections to the PN waveforms to
improve the agreement with numerical results [70, 86, 153].

So far we have focused on quasi-circular binaries. While the majority of systems
are indeed expected to have vanishing eccentricity, some astrophysical scenarios,
as for example third body interactions, may induce eccentric orbits. The effect of
significant eccentricities on the dynamics of the binary and the gravitational wave
signal has been studied in [158, 258]. Relatively small eccentricities cause a small
increase in the radiated energy and angular momentum, whereas binaries with large
eccentricities plunge rather than inspiral which significantly reduces the energy and
momentum emission. Binaries with larger eccentricity also emit an increasing frac-
tion of their energy in the � = 2, m = 0 mode as opposed to the dominating � = 2,
m = ±2 modes. The results obtained so far indicate that there exists a relatively
sharp distinction between orbiting and plunging configurations: simulations with
orbital angular momentum L � 0.8 M2 plunge, those with L � 0.8 M2 inspiral. The
study in [158] also demonstrated that the GW merger signal shows universality for
angular momenta above the critical value.

A remarkable behavior of black-hole binaries has been found in [230] when fine
tuning the linear momentum parameter of the holes in the initial data. Such fine
tuning leads to binaries which exhibit “zoom-whirl” behavior, that is, they inspiral
initially, but then may stall at some finite separation for a while and eventually merge
or separate. A similar behavior is known in the structure of geodesics of single black
hole spacetimes. While it is tempting to think of critical phenomena in the context of
the fine tuning of initial parameters (see [146] for a review), a clear relation between
the two effects has as yet not been established.

4.6.2 Unequal Mass Binaries

Spacetimes containing black-hole binaries of unequal mass are no longer symmet-
ric under rotations by 180◦ around the axis defined by the orbital angular momen-
tum. This loss of symmetry has important consequences for the gravitational wave
emission. In particular, the radiation of linear momentum is no longer isotropic and
results in a net-loss of linear momentum of the binary system. By conservation of
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linear momentum, this imparts a recoil or kick on the final merged hole. At the
leading order, this effect arises from the overlap of the mass-quadrupole with the
octupole and flux-quadrupole moments [49, 68, 220]. This kick is a genuinely rela-
tivistic effect and has significant repercussions on astrophysical systems containing
black holes [63, 65, 142, 151, 160, 181, 185, 190, 199, 212, 269, 271]. It might also
manifest itself directly in astrophysical observations of quasi-stellar objects without
host galaxies [148, 159, 186, 192, 200] or the distorted morphology of x-shaped
radio sources [190, 198, 199].

The kick generated by the inspiral and merger of unequal-mass binaries has been
the subject of various approximative studies [55, 114, 122, 126, 127, 254, 255],
but highly accurate results require the solution in the framework of fully non-linear
general relativity and, thus, numerical relativity. First numerical studies of certain
mass ratios revealed kick velocities of the order of 100 km/s [36, 156]. In order to
find the maximum kick resulting from unequal-mass binary inspiral, [136] calcu-
lated the kick for mass ratios ranging from q = 1 to q = 4 and found a maximum
kick of 175± 11 km/s for the mass ratio η = 0.195± 0.005. This is illustrated in
Fig. 4.5. This velocity is larger than the escape velocities of about 30 km/s for glob-
ular clusters and falls into the range of escape velocities predicted for dwarf galax-
ies, but is significantly smaller than that from giant elliptic galaxies of the order of
1000 km/s [199]. The resulting ejection or displacement of the black hole following
a merger has important repercussions on models for the formation history of black
holes as well as the structure of host galaxies and the population of intergalactic
black-hole populations (see e.g., [65, 151, 199, 212, 269]).
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Fig. 4.5 The recoil velocity resulting from the inspiral and merger of a non-spinning binary with
mass ratio η = M1M2/(M1 +M2)2 as calculated in [136]. For comparison the figure also includes
values from [36, 93, 114, 156, 254]
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In contrast to the emission of linear momentum, the radiated energy and angular
momentum are maximal in the equal-mass case. Radiated energy and the final spin
parameter of the single hole are well approximated by fitting formulas [52, 136]

Erad = 0.0363 M

[
4q

(1+q)2

]
, (4.70)

jfin = 0.089+2.4
q

(1+q)2 . (4.71)

A further consequence of the reduced symmetry of unequal-mass binaries is the
more complex structure of higher order multipoles. In the equal-mass case, all ra-
diation modes with odd m vanish by symmetry. Additionally, it turns out that the
percentage of energy radiated in higher (� > 2) modes increases from less than 2%
for q = 1 to more than 10% for q = 4. This is illustrated in Fig. 12 of [52]. This
sensitivity of higher order modes to the mass ratio is significant for gravitational
wave data analysis because the inclusion of higher order modes in the analysis is
likely to improve the accuracy of parameter estimates and the detection range of
gravitational wave observations (see e.g., [26, 27]).

The comparison of numerical with post-Newtonian results for unequal-mass bi-
naries represents a more challenging task, because of the increased computational
cost of numerical simulations as the mass ratio q deviates more strongly from 1.
There are currently not as accurate and long numerical waveforms available for the
comparison. The sequence of unequal-mass binaries generated for the kick calcu-
lations in [136] was used in [52] for a comparison with post-Newtonian results in
the inspiral and black-hole quasi-normal mode studies (see [51, 102, 179] and ref-
erences therein) in the ringdown phase. Similar to the equal-mass study in [86],
post-Newtonian results were found to predict remarkably well the relation between
wave frequency and amplitude. The convergence of the PN series is non-monotonic
but the inclusion of higher order terms improved the agreement with the numerical
results. Spin and mass parameter estimates obtained from the black-hole ring down
were in excellent agreement with the values derived from the measured gravitational
radiation and balance arguments. Intriguing oscillations observed in the quality fac-
tor estimates obtained in the ringdown phase could indicate non-linear effects but
might also be artifacts of numerical noise. Simulations of higher accuracy are re-
quired to conclusively address this issue.

The first study on the use of numerically generated waveforms in gravitational
wave data analysis was performed in [46]. They discuss sources of uncertainties
in using numerical waveforms and estimate that first detection efforts will require
about 100 templates to cover the zero spin part of the parameter space. Refer-
ence [218] used a set of numerical waveforms of equal-and unequal-mass binaries
and studied the agreement of the numerical waveforms with a variety of PN template
families. For this study they used the fitting factor (FF) [24] which takes into account
the instrumental sensitivity and is a standard tool in matched filtering data analysis.
They thus found good agreement with FF ≥ 0.96 for total masses of 10–20 M�
and ground-based detectors. For larger masses of the binary, the detectors become



4 Colliding Black Holes and Gravitational Waves 161

increasingly sensitive to the merger and ringdown part of the waveform, but they
found that the addition of a phenomenological 4PN term extends the range of high
fitting factors to about 120 M�. The effective-one-body (EOB) method (see [88] and
references therein) as well as the phenomenological Buonanno–Chen–Valisneri [85]
family of waveforms similarly lead to high-fitting factors in the mass range 10–
120 M�. The EOB approach is compared in further detail with numerical simula-
tions in [88], where the addition of a 4PN term is shown to result in phase agreement
within 8% of a GW cycle at the end of the ringdown phase. The EOB method was
also used in [115] to compare the predictions for the spin of the final merged hole.
Agreement of about 2% with the numerical results was found.

The generation of phenomenological waveforms is the subject of [5, 6]. Hybrid
waveforms obtained from matching numerical with PN waveforms are used to cre-
ate a parameterization of unequal-mass inspiral waveforms and study their use in
GW data analysis. The results indicate that the detection range of ground-based in-
terferometers might be enhanced significantly by using such waveform families.

A particular type of binaries of relevance for gravitational wave physics are the
so-called extreme mass ratio inspirals (EMRI) consisting of a stellar size compact
object orbiting around a supermassive black hole. EMRIs are considered one of the
most important sources of the space interferometer LISA (see, e.g., [161, 162]).
Mass ratios of q ∼ 10−6 characteristic of such systems are currently beyond the
range of capabilities of numerical relativity, and the modeling of these scenarios is
commonly done in the framework of perturbation theory and self-force calculations
(see [225] for a review). Numerical results might still be of interest for less extreme
mass ratios, as simulations with q = 10 appear to be feasible and their comparison
with approximative studies might allow for some calibration of the methods analo-
gous to the comparison between numerical and PN results.

4.6.3 Spinning Binaries

Spinning binaries are by far the most complex black-hole binaries. Bearing in mind,
that six out of the seven free physical parameters determine the spin, this is not
surprising. Indeed, the resulting parameter space is so large, that only a subset has
been studied in any detail so far. The majority of work has gone into studying bina-
ries where the spins are aligned or anti-aligned with the orbital angular momentum.
The case of the spin being aligned with the orbital angular momentum may also be
the astrophysically most likely scenario as accretion processes have been argued to
result in alignment of spin and orbital angular momentum [58].

A particularly intriguing question concerns the formation of naked singularities
as would be the case for Kerr holes with spin parameter a/M ≥ 1. In particular,
spins aligned with the orbital angular momentum might be suspected to lead to a
very large spin of the final merged hole. The simulations presented in [96], how-
ever, demonstrate the difficulties in creating a maximally spinning black hole in
this way. The larger the spin magnitude, the longer the inspiral lasts and the more
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angular momentum and energy is radiated from the system before merger. For the
interpretation of this delayed inspiral it is helpful to consider the innermost stable
circular orbit (ISCO) [44, 54, 84, 106, 112, 113, 141, 170, 222]. In particular, it can
be shown that the ISCO separation decreases for binaries with aligned spins and
increases for spins anti-aligned with the orbital angular momentum [222]. Assum-
ing that the ISCO gives a measure for the merger separation, this result agrees with
the delayed and accelerated inspiral observed for aligned and anti-aligned inspirals,
respectively.

Binaries with spins which are not parallel to the orbital angular momentum ex-
hibit spin-precession. References [98, 99] studied the precession using configura-
tions where the spins are either in the orbital plane or oriented at 45◦ relative to
the plane. They use a simplified method to determine the spin of the individual
holes where they integrate the flat space Killing vectors over the horizon surface.
Their simulations demonstrate the precession of the individual spins as well as the
realignment of the spin of the final black hole, the so-called spin-flip, which may
explain the reorientation of jets observed in radio galaxies [178, 219]. The spin–
orbit interaction was studied in special configurations starting either without spin
but with orbital angular momentum or the other way round in [97]. In both cases the
result is a transfer of momentum from spin to orbit or vice versa. This coupling also
contributes to the generally more complex structure of spinning binaries.

An effect we have already discussed in the context of unequal-mass binaries,
is the recoil or rocket effect in binary-black-hole mergers. Post-Newtonian studies
predicted contributions to the recoil arising from the spin–spin and spin–orbit cou-
pling in black-hole binaries [171]. One of the most surprising results as yet obtained
from numerical simulations of black hole binaries is the magnitude of the recoil
in spinning binaries. The first studies focused on spins parallel to the orbital an-
gular momentum and anti-aligned with each other. These scenarios generate kicks
of up to 500 km/s [99, 157, 175] for inspirals and some tens of km/s for head-on
collisions [103]. Even larger kicks of up to 1,300km/s were predicted by [99] for
configurations with spins in the orbital plane, but pointing in opposite directions.
Subsequent numerical studies of this scenario revealed unexpected kick magnitudes
of about 2,500 km/s for spin amplitudes a/M ≈ 0.7 which implies maximum values
of 4,000 km/s extrapolated for a/M → 1 [99, 100, 137]. Kicks above 1000 km/s are
also predicted by the EOB model [243]. Such large recoil velocities would in fact be
sufficient to eject black holes even from giant elliptic galaxies. Given that galaxies
with bulges appear to ubiquitously harbor supermassive black holes [124], it appears
that these “superkicks”, while theoretically possible, are not realized very often in
actual galactic mergers. This is also indicated by the Monte Carlo study employing
the EOB model in [243] who predict that only a few percent of mergers with mass
ratios 1 ≤ q ≤ 10 and spin magnitude a1 = a2 = 0.9 with random spin orientation
results in kicks above 1000 km/s.

The surprising magnitude of the recoil for spinning configurations has sparked
a wealth of more detailed investigations and attempts to generate fitting formulas
valid for general types of initial configurations. A multipolar analysis of the recoil
was presented in [244] for unequal masses and non-zero and non-precessing spins.
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Including specific multipoles with � ≤ 4 was found to determine the kick within a
few percent, higher order multipoles being almost negligible. They further found
these multipoles to describe well, how the kick is built-up during the inspiral and
merger, including breaking effects in the late stages. The numerical results were
found to be well reproduced by an “effective Newtonian” formula. A heuristic for-
mula suggested in [99] for the kick magnitude was tested in [187] using numeri-
cal simulations of three families of unequal-mass, spinning binaries. They observe
good agreement between the model and the numerical simulations and find most
of the kick to be generated close to the merger of the holes. The most recent in-
vestigation by [40], however, called into question the kick magnitude for unequal
masses. In particular, they observe a dependence on η3 instead of η2 which im-
plies fewer kicks above 1000 km/s, though still more than the number predicted
by the EOB study in [243]. The dependence of the kick on the orientation angle
of the spin in the orbital plane was systematically analyzed in [82]. The sinusoidal
dependence is in agreement with the heuristic model of [99]. It was also shown
that the recoil is with good approximation proportional to the difference between
the � = 2, m = +2, and m = −2 modes. 2.5 Post-Newtonian order predictions were
found to accurately model the spin evolution up to about 60 M before the merger,
but not beyond that, illustrating the need for more sophisticated models, such as
that of [243]. The asymmetry in the quadrupole radiation of these superkick also
implies that such GW sources appear brighter in some directions than others. Im-
plications of spinning binaries for GW detection were also the subject of [266].
They calculate the match between waveforms resulting from different spinning bi-
nary configurations and find the inclusion of higher order multipoles necessary to
break the degeneracy between the waveforms in the context of matched filtering
analysis.

Comparisons of PN predictions with numerical results for the emitted gravita-
tional waveforms from spinning binaries are currently restricted to the case of spins
aligned with the orbital angular momentum. First results indicate that these scenar-
ios might be modeled by PN theory with comparable accuracy as in the non-spinning
case [154]. There still remains a lot of work to do before more comprehensive state-
ments can be made.

A question of significant astrophysical interest concerns the spin distribution
arising from black-hole mergers. This effect was investigated in a series of pa-
pers [233–235] which provided semi-analytic fits. An analytic study based on con-
servation of momentum was presented in [71, 72] and suggests a series of numer-
ical simulations to nail down remaining free parameters in their predictions. The
analytic study by [87] pointed out a particularly intriguing scenario: the genera-
tion of a non-spinning hole in a merger of a binary with spins anti-aligned with
the orbital angular momentum. According to their model, this special case can only
be realized in the case of unequal masses. The fitting formulas of [233] as well
as numerical simulations presented in [53] agree remarkably well with the study
of [87].
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4.7 Conclusions

In summary, numerical relativity has achieved what has for a long time been called
its “holy grail”: The simulation of a black-hole binary through inspiral and merger.
The methods used for this breakthrough have turned out to be remarkably robust and
have so far been applied with great success to a wider class of black-hole binaries.
In the course of the last few years, numerical relativity has thus produced important
results for astrophysics, including kicks and diagrams for the spin distribution of
black holes. At the same time, the field has established a connection to approxima-
tive theories. The good agreement with PN results is encouraging from the point of
view of generating hybrid waveforms for use in gravitational wave detection and
parameter estimates. The use of numerical waveforms in the data analysis pipeline
is currently being started and is widely expected to improve the detection range even
of the current generation of GW detectors. Numerical relativity has also opened the
door to studying a variety of fundamental questions such as the existence of zoom-
whirl orbits and the presence of non-linear phenomena in black-hole ring down.

In spite of the dramatic progress of the field, many open questions remain. Most
outstanding among these are a more systematic investigation of the spin parameter
space including calibration of the results versus approximative theories. The accu-
racy of the simulations performed to date has probably been higher than anticipated,
but it remains to be seen, whether it will prove sufficient for the daunting task to gen-
erate complete waveform template banks for the ongoing effort to detect and observe
gravitational waves. It will also be interesting to probe a larger range of parameters,
as for example the mass ratio or the kinetic energy of binary spacetimes and com-
pare results with analytic or perturbative predictions. Questions such as these will
keep the community busy for years to come and it remains to be seen, how many
surprises are still to be discovered in the dynamics of spacetimes involving black
holes.
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73. S. Brandt and B. Brügmann, A simple construction of initial data for multiple black holes.

Phys. Rev. Lett. 78, 3606 (1997). 143
74. S. Brandt et al., Grazing collisions of black holes via the excision of singularities. Phys. Rev.

Lett. 85, 5496 (2000). 143, 148, 153
75. D. R. Brill and R. W. Lindquist, Interaction energy in geometrostatics. Phys. Rev. 131, 471

(1963). 142
76. D. Brown et al., Searching for gravitational waves from binary inspiral with LIGO. Class.

Quant. Grav. 21, S1625 (2004). 126
77. J. D. Brown, Puncture Evolution of Schwarzschild Black Holes. (2007) arXiv:0705.1359

[gr-qc]. 148
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for spinning black holes. Phys. Rev. Lett. 98 231101 (2007). 162



170 U. Sperhake

138. E. Gourgoulhon, P. Grandclément and S. Bonazzola, Binary black holes in circular orbits. I.
A global spacetime approach. Phys. Rev. D 65, 044020 (2002). 144

139. E. Gourgoulhon and J. L. Jaramillo, A 3+1 perspective on null hypersurfaces and isolated
horizons. Phys. Rept. 423, 159 (2006). 143

140. E. Gourgoulhon, 3+1 Formalism and bases of numerical relativity. (2000) gr-qc/0703035. 127, 129, 132
141. P. Grandclément, E. Gourgoulhon and S. Bonazzola, Binary black holes in circular orbits.

II. Numerical methods and first results. Phys. Rev. D 65, 044021 (2002). 144, 162
142. A. Gualandris and D. Merritt, Ejection of supermassive black holes from galaxy cores.

(2007) arXiv:0708.0771 [astro-ph]. 159
143. C. Gundlach and J. M. Martı́n-Garcı́a, Symmetric hyperbolicity and consistent boundary

conditions for second-order Einstein equations. Phys. Rev. D 70, 044032 (2004). 146
144. C. Gundlach, G. Calabrese, I. Hinder and J. M. Martı́n-Garcı́a, Constraint damping in the

Z4 formulation and harmonic gauge. Class. Quant. Grav. 22, 3767 (2005). 138
145. C. Gundlach and J. M. Martı́n-Garcı́a, Symmetric hyperbolic form of systems of second-

order evolution equations subject to constraints. Phys. Rev. D. 70, 044031 (2004). 135
146. C. Gundlach and J. M. Martı́n-Garcı́a, Critical phenomena in gravitational collapse.

Living Rev. Relativity 2007-5 url: http://relativity.livingreviews.org/Articles/lrr-2007-
5/download/index.html. Cited 29 Jan 2008. 158

147. HAD homepage. url: http://had.liu.edu/. Cited 29 Jan 2008. 145
148. M. G. Haehnelt, M. B. Davies and M. J. Rees, Possible evidence for the ejection of a super-

massive black hole from an ongoing merger of galaxies. MNRAS 366, L22 (2005). 159
149. S. G. Hah and R. W. Lindquist, The two body problem in geometrodynamics. Ann. Phys.

29, 304 (1964). 153
150. Z. Haiman and A. Loeb, What is the highest plausible redshift of luminous quasars? Astro-

phys. J. 552, 459 (2001). 126
151. Z. Haiman, Constraints from gravitational recoil on the growth of supermassive black holes

at high redshift. Astrophys. J. 613, 36 (2004). 126, 159
152. M. D. Hannam, S. Husa, D. Pollney, B. Brügmann and N. Ó Murchadha, Geometry and
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Chapter 5
Numerical Simulations of Black Hole Formation

N. Stergioulas

Abstract Using recent advance in numerical relativity, three-dimensional simula-
tions of the formation of black holes through gravitational collapse of rotating stars
have been performed with unprecedented accuracy. In the case of rotating neutron
stars, unstable to quasi-radial oscillations, the complete transition from one station-
ary solution of Einstein’s equations to another, including the formation of horizons
and gravitational wave emission has been demonstrated. In the case of differentially
rotating supermassive stars, non-axisymmetric dynamical instabilities can lead to
fragmentation and prompt collapse to supermassive black holes. Here, we present
a summary of recent, detailed numerical simulations by Baiotti et al. [1] and Zink
et al. [2, 3].

5.1 Introduction

The modeling of black hole spacetimes with collapsing matter-sources in multi-
dimensions has proved to be a challenging task in numerical relativity. Recently,
through the adoption of advanced numerical techniques, several obstacles have been
overcome. This has allowed the detailed simulation of the collapse of dynamically
unstable rotating stars to Kerr black holes, as well as the discovery of a new path to
black hole formation in supermassive stars, through the onset of non-axisymmetric
dynamical instabilities. These recent advances, once enriched with additional phys-
ical input, may ultimately allow for a better understanding of the process of black
hole formation and the accompanying emission of gravitational waves and high-
energy radiation.

The difficulties encountered in such simulations can be traced back to inherent
difficulties and complexities of the system of equations which is to be integrated, the
Einstein field equations coupled to the general-relativistic hydrodynamics
equations, as well as to the immense computational resources needed for
three-dimensional (3D) evolutions. In particular, the precise numerical computation
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of the gravitational radiation emitted in the process is particularly challenging, as
the energy released in gravitational waves is several orders of magnitude smaller
than the total rest-mass energy of the system.

The covariant nature of Einstein’s equations leads to difficulties in constructing
an appropriate coordinate representation which would allow for stable and accurate
simulations, especially when black holes form (characterized by unavoidable phys-
ical singularities). One of recent successful numerical approaches to this problem
relies on reformulating the original ADM approach in order to achieve long-term
stability. Building on the experience developed with lower-dimensional formula-
tions, Nakamura, Oohara and Kojima [4] presented a conformal traceless reformu-
lation of the ADM system which subsequent authors (see, e.g., [5–12]) showed to be
robust for different classes of spacetimes. The most widespread version was given
by [5, 6] and is commonly referred to as the BSSN formulation.

Successful long-term 3D evolutions of black holes in vacuum have been obtained
using excision techniques (see, e.g., [13–22]). In this approach, part of the spacetime
region within the black hole horizon (causally disconnected from the evolution out-
side the horizon) is not evolved. Instead, suitable boundary conditions are specified
at an excision surface. In simulations where the black hole is not present initially,
excision can be applied once the black hole apparent horizon is found. This tech-
nique extends the duration of the simulations past the time of black hole formation
considerably, which allows for an accurate investigation of the dynamics of trapped
surfaces formed during the collapse, from which important information on the mass
and spin of the formed black hole can be extracted.

The numerical investigations of black hole formation (beyond spherical sym-
metry) started in the early 1980s with the pioneering work of Nakamura [23], who
adopted the (2+1)+1 formulation of the Einstein equations in cylindrical coordinates
and introduced regularity conditions to avoid divergences at coordinate singulari-
ties. Nakamura used a “hypergeometric” slicing condition which prevents the grid
points from reaching the singularity when a black hole forms. The simulations could
track the evolution of the collapse of a 10M� “core” of a massive star with different
amounts of rotational energy, up to the formation of a rotating black hole. However,
the numerical scheme employed was not accurate enough to compute the emitted
gravitational radiation. Later on, in a series of papers [24–27], Bardeen, Stark and
Piran studied the collapse of rotating relativistic polytropes to black holes, also pre-
senting a first estimate of the associated gravitational radiation. The gravitational
field and hydrodynamics equations were formulated using the 3+1 formalism in
two spatial dimensions, using the radial gauge and a mixture of singularity-avoiding
polar and maximal slicings. The initial model was a spherically symmetric relativis-
tic polytrope of mass M in equilibrium. The gravitational collapse was induced by
lowering the pressure in the initial model by a prescribed (and often very large per-
centage). Simultaneously, an angular momentum distribution, approximating rigid-
body rotation, was added to the initial data. With such a setup, the energy ΔE carried
away through gravitational waves from the collapse to a Kerr black hole was found
to be ΔE/Mc2 < 7×10−4.

Shibata [28] investigated the effects of rotation on the criterion for prompt adia-
batic collapse of rigidly and differentially rotating polytropes to a black hole, finding
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that the criterion for black hole formation depends strongly on the amount of angu-
lar momentum, but only weakly on its (initial) distribution. The effects of shock
heating when using a non-isentropic equation of state (EOS hereafter) are important
in preventing prompt collapse to black holes in the case of large rotation rates. More
recently, Shibata [8, 29] has performed axisymmetric simulations of the collapse of
rotating supramassive neutron stars to black holes for a wide range of polytropic
EOSs. Parameterizing the “stiffness” of the EOS through the polytropic index N,
the final state of the collapse is a Kerr black hole without any noticeable disc for-
mation, when the polytropic index N is in the range 2/3 ≤ N ≤ 2. Based on the
specific angular momentum distribution in the initial star, an upper limit to the mass
of a possible disc was set at less than 10−3 of the initial stellar mass [29]. Further-
more, 3D, fully relativistic simulations of the collapse of supramassive, uniformly
rotating neutron stars to rotating black holes were presented in [7]. The simulations
focused on N = 1 polytropes and showed no evidence of massive disc formation or
outflows. These results are in agreement with those obtained in axisymmetry [8, 29]
and with the simulations presented in [30] (both in axisymmetry and in 3D) which
show that for a rapidly rotating polytrope with J/M2 < 0.9 (J being the angular
momentum) all the mass falls promptly into the black hole, with no disc being
formed.

Baiotti et al. [1] recently presented new, fully 3D simulations of gravitational
collapse of uniformly rotating neutron stars, both secularly and dynamically unsta-
ble, which were modeled as relativistic polytropes, ranging from slowly rotating
models to rapidly rotating models near the mass-shedding limit. For the first time
in such 3D simulations, the event horizon of the forming black hole was detected,
which allowed for a more accurate determination of the black hole mass and spin
than it would be otherwise possible using the area of the apparent horizon. Sev-
eral other approaches for measuring the properties of the newly formed Kerr black
hole, including the recently proposed isolated and dynamical-horizon frameworks,
were also considered. A comparison among the different methods indicated that
the dynamical-horizon approach is simple to implement and yields estimates which
are accurate and more robust than those of other methods. In all simulations pre-
sented in [1] no evidence for the formation of a sizable, stable disk outside the black
hole was found. The gravitational waves extracted from such simulations [31, 32]
confirmed the scaling of the emitted energy with the fourth power in the angular
momentum of the initial model, but the largest emitted energy (for the most rapidly
rotating model) was found to be several orders of magnitude smaller than what was
found in the approximate simulations of Stark & Piran [25]. The difference is due
to the approximations made when constructing initial data in the latter reference,
while [1] constructed highly accurate initial data.

Due to the recent prospect of detecting gravitational radiation directly, the con-
nection between the local dynamics of collapse and the gravitational wave emission
is currently receiving increased attention (e.g., [1, 31–33]). In this context, a nonax-
isymmetric instability in a star is expected to change the nature of the signal and to
enhance the chances of detecting it [34].
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Supermassive stars are possible progenitors of supermassive black holes, mod-
eled as polytropes with N ∼ 3. In spherical symmetry, every general-relativistic
polytrope with index N = 3 is unstable to radial oscillations [35] – in turn, there
exists a critical Nc < 3 for which the star is marginally stable. Rotation can increase
this critical value again [36]. Collapse is initiated in unstable models when a ra-
dial or quasi-radial perturbation grows on a dynamical timescale (corresponding to
a turning point along a sequence of constant angular momentum [37]). The cooling
sequence of models of supermassive stars has such a turning point, confirmed by
numerical simulations [38]. If the star is differentially rotating as it evolves along
the cooling sequence, it might encounter a non-axisymmetric instability [39–41]. A
recent investigation of the collapse of differentially rotating supermassive stars by
Saijo [42] was based on a sequence of relativistic N = 3 polytropes.

Zink et al. [2] found that differentially rotating N = 3 polytropes exist that can
have a quasi-toroidal shape (in addition to the usual quasi-spherical models). More-
over, it was found that such models may be unstable to non-axisymmetric instabil-
ities, leading to fragmentation of the star. Since the initial models were marginally
stable against collapse, the resulting fragments did, indeed, subsequently collapse.
In one case, where a one-armed instability was dominant, the time evolution of the
resulting fragment was followed (using adaptive mesh refinement) until the appar-
ent horizon of a black hole was detected, demonstrating for the first time such a new
path to black hole formation. The dynamical instability triggering black hole forma-
tion in the above setup may be related to low-T/|W | instabilities, which seems to be
associated with the existence of corotation points (points where the frequency of a
mode equals the local angular velocity of the fluid), see [43] (T is the kinetic energy
of the star, while |W | is its binding energy), see [44].

In numerical simulations of dynamically unstable stars in three spatial dimen-
sions, the collapse to a black hole proceeds in an almost axisymmetric manner,
although the initial data is represented on discrete Cartesian grids. It has been found
that even when non-axisymmetric perturbations are applied to the collapsing mat-
ter, no large deviations from axisymmetry are seen during the initial stages of col-
lapse [42]. In such cases, either the amount of rotational over gravitational binding
energy T/|W | is insufficient or the collapse time is too short to admit growth of
initial deviations from the symmetric state to significant levels. The situation can be
quite different when the system is not unstable to axisymmetric perturbations, or if
the collapse stabilizes around a new equilibrium with higher T/|W |. If a general-
relativistic star encounters a non-axisymmetric instability, the nature of its subse-
quent evolution may be characterizable by certain properties of the equilibrium
model, like the rotation law, T/|W |, compactness, and equation of state. For the
limit of uniformly rotating, almost homogeneous models of low compactness, one
expects, for T/|W | > 0.27, a dynamical transition to an ellipsoid by a principle of
correspondence with Newtonian gravity. For polytropes with strong differential ro-
tation, the initial model may be quasi-toroidal, i.e., it has at least one isodensity
surface which is homeomorphic to a torus. If models of this kind, or purely toroidal
ones, are subject to the development of a non-axisymmetric instability, they may
exhibit fragmentation [45, 46]. It is this last kind of instability that is of particular
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interest in the case of supermassive stars. Watts et al. ([43], see also [47, 48]) have
suggested a possible relation of low-T/|W | instabilities to the location of oscillation-
mode pattern speeds with respect to the corotation band.1

Since the parameter space of possible initial models is large, and given that three-
dimensional simulations of this kind are still quite expensive in terms of computa-
tional resources, one is forced to restrict attention to several isolated sequences,
where just one initial model parameter is varied, to gain evidence on its systematic
effects, and to a plane in parameter space defined by a constant central rest-mass
density and a fixed parameterΓ = 4/3 in theΓ -law equation of state P = (Γ −1)ρε.
As long as one is concerned with the question of stability of modes along a sequence,
the consideration of models of constant central density is not overly restrictive as far
as the development of the instability is concerned, while the nature of the final rem-
nant might be rather sensitive to this assumption. The choice Γ = 4/3 is well known
to approximately correspond to the adiabatic coefficient of a degenerate, relativistic
Fermi gas or to a radiation pressure-dominated gas [49], and is thus closely con-
nected to iron cores and supermassive stars. For supermassive stars an event hori-
zon can form before thermonuclear reactions become important, depending on the
metallicity and mass of the progenitor [50]. Because of this, it is conceivable that the
type of evolution in [2] can be used as an approximate model of supermassive black
hole formation. Gravitational wave detection may uncover so-far unexpected pro-
cesses involving black hole formation, and in that case it is useful to have a general
understanding of possible dynamical scenarios.

Previous work on dynamical instabilities relevant for supermassive stars comes
from three areas: the study of (i) fragmentation in Newtonian polytropes, (ii) non-
axisymmetric instabilities in general-relativistic polytropes, and (iii) black hole for-
mation by gravitational collapse. In the first area, of particular relevance is the work
by Centrella, New et al. [46, 51], since the kind of initial model and subsequent evo-
lution studied in these publications are similar to the ones presented in [2, 3], apart
from the fact that Newtonian gravity and a softer equation of state (Γ = 1.3) were
used. New and Shapiro [40] investigated equilibrium sequences of differentially ro-
tating Newtonian polytropes with Γ = 4/3, in order to present an evolutionary sce-
nario where supermassive stars develop a bar-mode instability, instead of collapsing
axisymmetrically. This kind of scenario (see also [34, 39]) is also important when
connecting the fragmentation due to non-axisymmetric instabilities presented here
to the evolution of supermassive stars.

Non-axisymmetric dynamical instabilities in general relativistic, self-gravitating
fluid stars have been studied by several authors [30, 52–56]. In addition, some ev-
idence of fragmentation has been found in [30] in a ring resulting from a “supra-
Kerr” collapse with J/M2 > 1 (here J denotes the total angular momentum, and M
the ADM mass), but no black hole was identified, although the pressure in the initial
data was artificially reduced by a large factor in order to induce collapse. Black hole
formation by gravitational collapse has been studied extensively, in recent years in

1 The corotation band in a differentially rotating star is the set of frequencies associated with modes
having at least one corotation point, i.e., a point where the local pattern speed of the instability
matches the local angular velocity.
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three spatial dimensions (see [1, 7, 30, 57–60] and references in the introduction).
The collapse of differentially rotating supermassive stars in the approximation of
spatial conformal flatness has been investigated by Saijo [42]. Finally, one should
mention the work on low-T/|W | instabilities by Watts et al. [43, 47, 48] and recent
numerical studies of related interest can be found in [61–63].

5.2 Numerical Methods

The simulations in [1–3] were performed with a general-relativistic hydrodynamics
code, the Whisky code [64], in which the Einstein and hydrodynamics equations
are finite differenced on a Cartesian grid and solved using state-of-the-art numerical
schemes. The code incorporates the expertise developed over the past years in the
numerical solution of the Einstein equations and of the hydrodynamics equations
in a curved spacetime (see [9, 10], but also [65] and references therein) and is the
result of a collaboration among several European Institutes [66].

The Whisky code solves the general-relativistic hydrodynamics equations on a
3D numerical grid with Cartesian coordinates. The code has been constructed within
the framework of the Cactus Computational Toolkit (see [67] for details), devel-
oped at the Albert Einstein Institute (Golm) and at the Louisiana State University
(Baton Rouge). This public domain code provides high-level facilities such as par-
allelization, input/output, portability on different platforms, and several evolution
schemes to solve general systems of partial differential equations. Special atten-
tion is dedicated to the solution of the Einstein equations, whose matter terms in
non-vacuum spacetimes are handled by the Whisky code, which incorporates im-
portant recent developments regarding, in particular, new numerical methods for
the solution of the hydrodynamics equations that have been described in detail
in [68]. These include (i) the Piecewise Parabolic Method (PPM) [69] and the Essen-
tially Non-Oscillatory (ENO) methods [70] for the cell-reconstruction procedure;
(ii) the Harten-Lax-van Leer-Einfeldt (HLLE) [71] approximate Riemann solver,
the Marquina flux formula [72]; (iii) the analytic expression for the left eigenvec-
tors [73] and the compact flux formulae [74] for a Roe-type Riemann solver and a
Marquina flux formula; (iv) the use of a “method of lines” (MoL) approach for the
implementation of high-order time evolution schemes; (v) the possibility to couple
the general-relativistic hydrodynamics equations with a conformally decomposed
three metrics.

While the Cactus code provides at each time step a solution of the Einstein
equations [9]

Gμν = 8πTμν , (5.1)

where Gμν is the Einstein tensor and Tμν is the stress–energy tensor, the Whisky
code provides the time evolution of the hydrodynamics equations, expressed through
the conservation equations for the stress–energy tensor T μν and for the matter cur-
rent density Jμ

∇μT μν = 0 , ∇μJμ = 0. (5.2)
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In what follows, a brief description is given, on how both the right-and the left-
hand sides of (5.1) are computed within the coupled Cactus/Whisky codes.

5.2.1 Evolution of the Field Equations

In the ADM formulation [75, 76], the spacetime is foliated with a set of non-
intersecting spacelike hypersurfaces. Two kinematic variables relate the hypersur-
faces: the lapse function α , which describes the rate of advance of time along a
timelike unit vector nμ normal to a spacelike hypersurface, and the shift three-vector
β i that relates the coordinates of two spacelike hypersurfaces. In this construction
the line element reads

ds2 = −(α2 −βiβ i)dt2 +2βidxidt + γi jdxidx j . (5.3)

The original ADM formulation casts the Einstein equations into a first-order
(in time) quasi-linear [77] system of equations. The dependent variables are the
three-metric γi j and the extrinsic curvature Ki j, with first-order evolution equations
given by

∂tγi j = −2αKi j +∇iβ j +∇ jβi, (5.4)

∂tKi j = −∇i∇ jα+α

[
Ri j +K Ki j −2KimKm

j

−8π
(

Si j −
1
2
γi jS

)
−4πρADMγi j

]

+βm∇mKi j +Kim∇ jβm +Km j∇iβm.

(5.5)

Here, ∇i denotes the covariant derivative with respect to the three-metric γi j, Ri j

is the Ricci curvature of the three-metric, K ≡ γ i jKi j is the trace of the extrinsic
curvature, Si j is the projection of the stress–energy tensor onto the spacelike hyper-
surfaces and S ≡ γ i jSi j (for a more detailed discussion, see [78]). In addition to the
evolution equations, the Einstein equations also provide four constraint equations to
be satisfied on each spacelike hypersurface. These are the Hamiltonian constraint
equation

(3)R+K2 −Ki jK
i j −16πρADM = 0 , (5.6)

and the momentum constraint equations

∇ jK
i j − γ i j∇ jK −8π ji = 0 . (5.7)

In (5.4), (5.5), (5.6), and (5.7), ρADM and ji are the energy density and the mo-
mentum density as measured by an observer moving orthogonally to the spacelike
hypersurfaces.
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Details of the particular implementation of the conformal traceless reformulation
of the ADM system (used in the Cactus code in place of the original ADM for-
mulation), as proposed by [4–6] are extensively described in [9, 79]. This formula-
tion makes use of a conformal decomposition of the three-metric, γ̃i j = e−4φ γi j, and
the trace-free part of the extrinsic curvature, Ai j = Ki j − γi jK/3, with the conformal
factor φ chosen to satisfy e4φ = γ1/3, where γ is the determinant of the spatial three-
metric γi j. In addition to the evolution equations for the conformal three-metric γ̃i j

and the conformal traceless extrinsic curvature Ãi j, there are evolution equations
for the conformal factor φ , for the trace of the extrinsic curvature K and for the
“conformal connection functions” Γ̃ i ≡ γ̃ i j

, j. Although the final mixed, first and
second-order, evolution system for

{
φ ,K, γ̃i j, Ãi j,Γ̃ i

}
is not in any immediate sense

hyperbolic, there is evidence showing that the formulation is at least equivalent
to a hyperbolic system [80–82]. In the formulation of [5], the auxiliary variables
F̃i = −∑ j γ̃i j, j were used instead of the Γ̃ i.

In [9, 83] the improved properties of this conformal traceless formulation of
the Einstein equations were compared to the ADM system. In particular, in [9] a
number of strongly gravitating systems were analyzed numerically with convergent
high-resolution, shock-capturing (HRSC) methods with total-variation-diminishing
(TVD) schemes using the equations described in [84]. These included weak and
strong gravitational waves, black holes, boson stars and relativistic stars. The re-
sults showed that this treatment leads to numerical evolutions of the various strongly
gravitating systems which did not show signs of numerical instabilities for suffi-
ciently long times. However, it was also found that the conformal traceless formula-
tion requires grid resolutions higher than the ones needed in the ADM formulation
to achieve the same accuracy, when the foliation is made using the “K-driver” ap-
proach discussed in [85]. But, in long-term evolutions a small error-growth rate and
the absence (or suppression) of numerical instabilities are the most desirable prop-
erties.

5.2.1.1 Gauge Choices

The Cactus code can handle arbitrary lapse and shift conditions, which can be
chosen as appropriate for a given spacetime simulation. In particular, in [1] the hy-
perbolic K-driver slicing conditions of the form

(∂t −β i∂i)α = − f (α) α2(K −K0), (5.8)

with f (α) > 0 and K0 ≡ K(t = 0) was used. This is a generalization of many well-
known slicing conditions. For example, setting f = 1 one recovers the “harmonic”
slicing condition, while setting f = q/α , with q an integer, one recovers the gener-
alized “1+log” slicing condition [86]. All of the simulations discussed in [1] used
condition (5.8) with f = 2/α . This choice was been made mostly because of its
computational efficiency, even though “gauge pathologies” could develop with the
“1+log” slicings [87, 88].
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For the spatial gauge, in [1] the “Gamma-driver” shift conditions were used
[18, 79], which essentially act so as to drive the Γ̃ i to be constant. In this respect,
the “Gamma-driver” shift conditions are similar to the “Gamma-freezing” condi-
tion ∂tΓ̃ k = 0, which, in turn, is closely related to the well-known minimal distor-
tion shift condition [89]. The differences between these two conditions involve the
Christoffel symbols and are basically due to the fact that the minimal distortion con-
dition is covariant, while the Gamma-freezing condition is not. In [1] the hyperbolic
Gamma-driver condition,

∂ 2
t β i = F ∂tΓ̃ i −η ∂tβ i, (5.9)

where F and η are, in general, positive functions of space and time were used. For
the hyperbolic Gamma-driver conditions it is crucial to add a dissipation term with
coefficient η to avoid strong oscillations in the shift. Experience has shown that
by tuning the value of this dissipation coefficient it is possible to almost freeze the
evolution of the system at late times. In [1] the values F = 3

4 and η = 3 were chosen
and were kept fixed in time.

5.2.2 Evolution of the Equations of Hydrodynamics

An important feature of the Whisky code is the implementation of a conservative
formulation of the hydrodynamics equations [73, 90, 91], in which the set of (5.2)
is written in a hyperbolic, first-order and flux-conservative form of the type

∂tq+∂if(i)(q) = s(q) , (5.10)

where f(i)(q) and s(q) are the flux-vectors and source terms, respectively [65]. Note
that the right-hand side (the source terms) depends only on the metric, and its first
derivatives, and on the stress–energy tensor. Furthermore, while the system (5.10) is
not strictly hyperbolic, strong hyperbolicity is recovered in a flat spacetime, where
s(q) = 0. As shown by [91], in order to write system (5.2) in the form of system
(5.10), the primitive hydrodynamical variables (i.e., the rest-mass density ρ and
the pressure p (measured in the rest-frame of the fluid), the fluid three-velocity vi

(measured by a local zero-angular momentum observer), the specific internal en-
ergy ε and the Lorentz factor W are mapped to the so-called conserved variables
q ≡ (D,Si,τ) via the relations

D ≡ √
γWρ ,

Si ≡ √
γρhW 2vi , (5.11)

τ ≡ √
γ
(
ρhW 2 − p

)
−D ,

where h ≡ 1+ε + p/ρ is the specific enthalpy and W ≡ (1− γi jviv j)−1/2. Note that
only five of the seven primitive variables are independent.
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In order to close the system of equations for the hydrodynamics an EOS which
relates the pressure to the rest-mass density and to the energy density must be spec-
ified. The (barotropic) polytropic EOS is

p = KρΓ , (5.12)

e = ρ+
p

Γ −1
, (5.13)

while the“ideal-fluid” EOS is

p = (Γ −1)ρ ε . (5.14)

Here, e is the energy density in the rest frame of the fluid, K the polytropic constant
(not to be confused with the trace of the extrinsic curvature defined earlier) andΓ the
adiabatic exponent. In the case of the polytropic EOS (5.12), Γ = 1 + 1/N, where
N is the polytropic index and the evolution equation for τ need not be solved. In the
case of the ideal-fluid EOS (5.14), on the other hand, non-isentropic changes can
take place in the fluid and the evolution equation for τ needs to be solved. Note that
the polytropic EOS (5.12) does not allow any transfer of kinetic energy to thermal
energy, a process which occurs in physical shocks (shock heating).

Additional details on numerical methods for general-relativistic hydrodynamics
can be found in [65]. An important feature of the first-order hyperbolic form of the
equations is that it has allowed to extend to a general-relativistic context the pow-
erful numerical methods developed in classical hydrodynamics, in particular HRSC
schemes based on linearized Riemann solvers. Such schemes are essential for a cor-
rect representation of shocks, whose presence is expected in several astrophysical
scenarios. For an introduction to HRSC methods the reader is referred to [92–94].

5.2.3 Hydrodynamical Excision

Excision boundaries are usually based on the principle that a region of spacetime
that is causally disconnected can be ignored without this affecting the solution in
the remaining portion of the spacetime. Although this is true for signals and per-
turbations travelling at physical speeds, numerical calculations may violate this as-
sumption and disturbances, such as gauge waves, may travel at larger speeds thus
leaving the physically disconnected regions. Note that, in non-vacuum spacetimes,
the excision boundaries for the hydrodynamical and the metric fields need not be the
same. For the fluid quantities, in fact, all characteristics emanating from an event in
spacetime will propagate within the sound-cone at that event, and, for physically
realistic EOSs, this sound-cone will always be contained within the light-cone at
that event. As a result, if a region of spacetime contains trapped surfaces, both the
hydrodynamical and the metric fields are causally disconnected and both can be ex-
cised there. An effective implementation consists of applying the simplest outflow
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boundary condition (here, by outflow we mean flow into the excision region) at the
excision boundary. In practice, one can apply a zeroth-order extrapolation to all vari-
ables at the boundary, i.e., a simple copy of the hydrodynamical variables across the
excision boundary. Although the actual implementation of this excision technique
may depend on the reconstruction method used, the working principle is always the
same.

The location of the excision boundary itself is based on the determination of
the apparent horizon which, within the Cactus code, is obtained using the fast
finder of Thornburg [95]. In [1], the excision boundary is placed a few gridpoints
(typically 4), within a surface which is 0.6 times the size of the apparent hori-
zon. Similar or larger excision regions show no problems in vacuum evolutions
and since the sound-cones are always contained within the light-cones, one ex-
pects no additional problems to arise from the hydrodynamics. More details on
how the hydrodynamical excision is applied in practice, as well as tests showing
that this method is stable, consistent and converges to the expected order can be
found in [96].

5.2.4 General-Relativistic Hydrodynamics

The equations of general-relativistic hydrodynamics are derived from the conserva-
tion equations of the stress–energy tensor T ab and the matter current density Ja:

∇aT ab = 0 , ∇aJa = 0 , (5.15)

where Ja = ρua, ρ is the rest-mass density and ua the 4-velocity of the fluid. We use
the perfect-fluid stress–energy tensor

T ab = ρhuaub +Pgab, (5.16)

with P being the fluid pressure, h = 1 + ε + P/ρ the relativistic specific enthalpy
and ε the specific internal energy of the fluid.

For evolving the hydrodynamical fields we employ the Whisky code [1, 64]
which implements the general-relativistic hydrodynamics equations in the hyper-
bolic first-order flux-conservative form proposed and tested in [84, 91]. This code
requires us to add an artificial atmosphere to the computational domain in regions of
very low density. We typically choose an atmospheric density of 10−5 of the maxi-
mal density of the initial model. The evolved state vector U = (D,Si,τ)T is defined
in terms of the primitive hydrodynamical variables ρ , P and vi, the 3-velocity, mea-
sured by an Eulerian observer:

U =

⎡
⎣ D

S j

τ

⎤
⎦ =

⎡
⎢⎣

√γWρ
√γρhW 2v j

√γ(ρhW 2 −P−Wρ)

⎤
⎥⎦ , (5.17)
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where γ = detγi j and W = αu0 = 1/
√

1− γi jviv j is the Lorentz factor.
The set of equations then reads

∂tU +∂iFi = S, (5.18)

with the three flux vectors given by

Fi =

⎡
⎢⎣

α
(
vi − 1

α β
i
)

D

α
((

vi − 1
α β

i
)

S j +
√γPδ i

j

)
α

((
vi − 1

α β
i
)
τ+

√γviP
)

⎤
⎥⎦ . (5.19)

The source vector S, which contains the curvature-related force and work terms, but
no derivatives of the primitive variables, is given by

S =

⎡
⎢⎣

0

α√γT μνgνσΓ σ
μ j

α√γ(T μ0∂μα−αT μνΓ 0
μν)

⎤
⎥⎦ , (5.20)

where Γ α
μν are the standard 4-Christoffel symbols.

We choose the ideal-fluid Γ -law equation of state,

P(ρ,ε) = (Γ −1)ρε (5.21)

to close the system of hydrodynamic equations.

5.2.5 Mesh Refinement

In order to ensure adequate spatial resolution while keeping the computational re-
source requirements of three-dimensional simulations to a minimum, one can use
Berger-Oliger style [97] mesh refinement with subcycling in time as implemented
by the open-source Carpet [98, 99] driver for the Cactus code. Carpet pro-
vides fixed, progressive [1] and adaptive mesh refinement. In [2, 3] a predefined
refinement hierarchy with five levels of refinement, arranged in a box-in-box man-
ner centered on the origin was used. The resolution factor between levels is two.
Adaptive (or at least progressive) mesh refinement is necessary to track black hole
formation in detail and has been performed on one model in [2].

5.2.6 Mode Extraction

To evaluate and quantify the stability or instability of a given model to non-
axisymmetric perturbations, once can extract azimuthal modes eimϕ by means of
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a Fourier analysis of the rest-mass density on a ring of fixed coordinate radius in
the equatorial plane.2 Following Tohline et al. [100], one can compute complex
weighted averages

Cm =
1

2π

∫ 2π

0
ρ(ϖ ,ϕ,z = 0)eimϕdϕ (5.22)

and define normalized real mode amplitudes

Am =
|Cm|
C0

. (5.23)

Here ϖ =
√

x2 + y2 = const. and is chosen to correspond to the initial equatorial
radius of maximum density in the case of quasi-toroidal initial models, if not men-
tioned otherwise. The index m corresponds to the number of azimuthal density nodes
and is used to characterize the modes.

5.3 Black Hole Formation in Rotating Neutron Star Collapse

Rotating relativistic stars with mass larger than the maximum mass of nonrotating
models (i.e., supramassive stars) can become unstable to axisymmetric perturba-
tions. Given equilibrium models of gravitational mass M and central energy density
ec along a sequence of fixed angular momentum or fixed rest mass, the Friedman,
Ipser & Sorkin criterion ∂M/∂ec = 0 [37] can be used to locate the exact onset of
the secular instability to axisymmetric collapse. The onset of the dynamical insta-
bility to collapse is located near that of the secular instability but at somewhat larger
central energy densities. Unfortunately, no simple criterion exists to determine this
location, but the expectation mentioned above has been confirmed by the simula-
tions performed in [1, 7]. Note that in the absence of viscosity or strong magnetic
fields, the star is not constrained to rotate uniformly after the onset of the secular
instability and could develop differential rotation. In a realistic neutron star, how-
ever, viscosity or intense magnetic fields are likely to enforce a uniform rotation and
cause the star to collapse soon after it passes the secular instability limit.

The initial data for the fully relativistic, 3D dynamical simulations are usually
constructed with an independent, 2D numerical code, that computes accurate sta-
tionary equilibrium solutions for axisymmetric and rapidly rotating relativistic stars
in polar coordinates, such as the rns code presented in [101]. The data are then
transformed to Cartesian coordinates using standard coordinate transformations. Ini-
tial data constructed with the rns code have also been used in [9, 10, 102] and
details on the accuracy of the code can be found in [44]. In [1] the focus was on
initial models constructed with the polytropic EOS (5.12), choosing Γ = 2 and a

2 These quantities are not gauge-invariant, but they provide a useful way of characterizing the
representation of the instability within a given choice of coordinates.
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polytropic constant KID = 100 to produce stellar models that are, at least qualita-
tively, representative of what is expected from observations of neutron stars. More
specifically, four models along the line defining the onset of the secular instabil-
ity and having polar-to-equatorial axes ratio of roughly 0.95, 0.85, 0.75 and 0.65
were selected (these models are indicated as S1–S4 in Fig. 5.1), respectively. Four
additional models were defined by increasing the central energy density of the secu-
larly unstable models by 5%, keeping the same axes ratio. These models (indicated
as D1–D4 in Fig. 5.1) were found (as expected) to be dynamically unstable in the
simulations that were performed.

Figure 5.1 shows the gravitational mass as a function of the central energy den-
sity for equilibrium models constructed with the chosen polytropic EOS. The solid,
dashed and dotted lines correspond respectively to the sequence of non-rotating
models, the sequence of models rotating at the mass-shedding limit and the se-
quence of models that are at the onset of the secular instability to axisymmetric
perturbations. Furthermore, the secularly and dynamically unstable initial models
used in the collapse simulations are shown as open and filled circles, respectively.

Table 5.1 summarizes the main equilibrium properties of the initial models. The
circumferential equatorial radius is denoted as Re, while Ω is the angular velocity
with respect to an inertial observer at infinity, and rp/re is the ratio of the polar to
equatorial coordinate radii. The height of the corotating innermost stable circular

Fig. 5.1 Gravitational mass vs. central energy density for equilibrium models constructed with
the polytropic EOS, for Γ = 2 and polytropic constant KID = 100. The solid, dashed and dotted
lines correspond to the sequence of non-rotating models, the sequence of models rotating at the
mass-shedding limit and the sequence of models that are at the onset of the secular instability
to axisymmetric perturbations. Also shown are a number of secularly unstable (open circles) and
dynamically unstable models (filled circles)
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Table 5.1 Equilibrium properties of a number of initial stellar models. The different columns refer
respectively to: the central rest-mass density ρc, the ratio of the polar to equatorial coordinate
radii rp/re, the gravitational mass M, the circumferential equatorial radius Re, the angular velocity
Ω , the ratio J/M2 where J is the angular momentum, the ratio of rotational kinetic energy to
gravitational binding energy T/|W |, and the “height” of the corotating ISCO h+. For all models,
Γ = 2 and KID = 100

Model ρ†
c rp/re M Re Ω ‡ J/M2 T/|W |‡ h+

S1 3.154 0.95 1.666 7.82 1.69 0.207 1.16 1.18
S2 3.066 0.85 1.729 8.30 2.83 0.363 3.53 0.51
S3 3.013 0.75 1.798 8.90 3.49 0.470 5.82 0.04
S4 2.995 0.65 1.863 9.76 3.88 0.545 7.72 –

D1 3.280 0.95 1.665 7.74 1.73 0.206 1.16 1.26
D2 3.189 0.85 1.728 8.21 2.88 0.362 3.52 0.58
D3 3.134 0.75 1.797 8.80 3.55 0.468 5.79 0.10
D4 3.116 0.65 1.861 9.65 3.95 0.543 7.67 –

† ×10−3

‡ ×10−2

orbit (ISCO) is defined as h+ = R+−Re, where R+ is the circumferential radius for
a corotating ISCO observer. Note that in those models for which a value of h+ is
not reported, all circular geodesic orbits outside the stellar surface are stable. Other
quantities shown are the central rest-mass density ρc, the angular momentum J and
the ratio of rotational kinetic energy to gravitational binding energy T/|W |.

All of the simulations presented in [1] were computed using a uniformly spaced
computational grid for which symmetry conditions were imposed across the equa-
torial plane. Different spatial resolutions were used to check convergence, up to a
resolution of 2882 × 144 cells. The outer boundary was set at ∼2.0 times the ini-
tial stellar equatorial radius for D1 and at ∼ 1.4 times the initial stellar equatorial
radius for D4. The hydrodynamics equations were solved employing the Marquina
flux formula and a third-order PPM reconstruction, which was shown in [103] to be
superior to other methods in maintaining a highly accurate angular-velocity profile
(see also [102] for recent 3D evolutions of rotating relativistic stars with a third-
order order PPM reconstruction). The Einstein field equations, on the other hand,
were evolved using the ICN evolution scheme, the “1+log” slicing condition and
the “Gamma-driver” shift conditions [18]. Finally, both polytropic and ideal-fluid
EOSs were used, although no significant difference was found in the dynamics be-
tween the two cases. This is most probably related to the small ratio of J/M2 for
uniformly rotating initial models. This implies a relatively rapid collapse and, as a
result, no significant shock formation develops.

5.3.1 Dynamics of the Matter

Given an initial stellar model which is dynamically unstable, simple round-off er-
rors would be sufficient to produce an evolution leading either to the gravitational
collapse to a black hole or to the migration to the stable branch of the equilibrium
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configurations [10] (recall that both evolutions are equally probable mathematically,
although astrophysically one only expects the case of collapse to occur). In general,
however, leaving the onset of the dynamical instability to the cumulative effect of
the numerical truncation error is not a good idea, since this produces instability
growth times that are dependent on the grid resolution used. For this reason, the
collapse is induced by slightly reducing the pressure in the initial configuration.
This is done uniformly throughout the star by using a polytropic constant for the
evolution, K, that is slightly smaller than the one used to compute the initial data,
KID. Very small perturbations of order (KID −K)/KID � 2% are sufficient to induce
collapse.

After imposing the pressure reduction, the Hamiltonian and momentum con-
straints (the initial-value problem, IVP) are solved to enforce that the constraint vi-
olation is at the truncation-error level of the Cartesian grid. This ensures that second
order convergence holds from the start of the simulations. Strict second-order con-
vergence is lost when excision is introduced, although the code remains convergent
at a lower rate, while the norms of the Hamiltonian constraint start to grow exponen-
tially. Details on how one can solve the IVP implementing the York–Lichnerowicz
conformal transverse-traceless decomposition can be found in [104]. If, on the other
hand, the IVP is not solved after the pressure change, the constraint violations in-
crease twice as fast and converge to second order only after an initial period of about
20 M ∼ 0.17 ms.

The dynamics resulting from the collapse of models S1–S4 and D1–D4 are
qualitatively similar. However, as one would expect, models D1–D4 collapse more
rapidly to a black hole (the formation of the apparent horizon appears about 5%
earlier in coordinate time) are computationally less expensive and therefore better
suited for a detailed investigation. Specifically, model D4 which, being rapidly ro-
tating, is already rather flattened initially (i.e., rp/re = 0.65) and has the largest
J/M2 among the dynamically unstable models (cf., Fig. 5.1 and Table 5.3) repre-
sents the most interesting case. In Figs. 5.2 and 5.3 some representative snapshots
of isocontour levels during the collapse of this rapidly rotating model are shown.
As the collapse proceeds, the large angular velocity of the initial model produces
significant deviations from a spherical infall. Indeed, the parts of the star around the
rotation axis that are experiencing smaller centrifugal forces collapse more promptly
and, as a result, the configuration increases its oblateness.

At about t = 0.64 ms the collapse of model D4 produces an apparent horizon.
Soon after this, the central regions of the computational domain are excised, pre-
venting the code from crashing and thus allowing for an extended time evolution.
The dynamics of the matter at this stage is shown in the lower panel of Fig. 5.2,
which refers to t = 0.67 ms and where both the location of the apparent horizon
(thick dashed line) and of the excised region (area filled with squares) are shown.
By this time, the star has flattened considerably and all of the matter near the ro-
tation axis has fallen inside the apparent horizon, but a disc of low-density matter
remains near the equatorial plane, orbiting at very high velocities �0.2 c. The ap-
pearance of an effective barrier preventing a purely radial infall of matter far from
the rotational axis is likely the consequence of the larger initial angular momentum
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Fig. 5.2 Collapse sequence
for the rapidly rotating model
D4 [1]. Different panels refer
to different snapshots during
the collapse and show the
isocontours of the rest-mass
density and velocity field in
the (x,z) plane. The isobaric
surfaces are logarithmically
spaced and a reference length
for the vector field is shown
in the lower-right panel, for
a velocity of 0.2 c. The time
of the different snapshots ap-
pears in the top right corner
of each panel and is given in
ms, while the units on both
axes are expressed in km.
Note that a region around the
singularity that has formed
in the lower panel is excised
from the computational do-
main and is indicated as an
area filled with squares. Also
shown with a thick dashed
line is the coordinate location
of the apparent horizon
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Fig. 5.3 Magnified view of
the final stages of the collapse
of model D4 [1]. Note that a
region around the singularity
that has formed is excised
from the computational do-
main and this is indicated as
an area filled with squares.
Also shown with a thick
dashed line is the coordinate
location of the apparent hori-
zon

of the this collapsing matter and of the pressure wave originating from the faster col-
lapse along the rotational axis. Note, in fact, that the radial velocity at the equator
does not increase significantly at the stellar surface between t � 0.49 and t � 0.67
ms, but that it actually slightly decreases. This is the opposite of what happens
for the radial velocity of the fluid elements in the stellar interior on the equatorial
plane.

Note that the disc formed outside the apparent horizon is not dynamically stable
and, in fact, it rapidly accretes onto the newly formed black hole. This is shown in
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Fig. 5.3, which offers a magnified view at a later time of t = 0.79 ms. At this stage
the disc is considerably flattened but also has large radial inward velocities which
induce it to be accreted rapidly onto the black hole. Note that as the area of the
apparent horizon increases, so does the excised region, which is allowed to grow
accordingly. This can be appreciated by comparing the areas filled with squares in
the lower panel of Fig. 5.2 (referring to t = 0.67 ms) with the corresponding ones
in Fig. 5.3 (referring to t = 0.79 ms). By a time t = 0.85 ms, essentially all of the
residual stellar matter has fallen within the trapped surface of the apparent horizon
and the black hole thus formed approaches the Kerr solution. Note that a simple
kinematic explanation can be given for the instability of the disc formed during this
oblate collapse and comes from relating the position of the outer edge of the disc
when this first forms, with the location of the ISCO of the newly formed Kerr black
hole. Measuring accurately the mass and spin of the black hole reveals, in fact, that
the ISCO is located at x = 11.08 km, which is larger than the outer edge of the disc
(cf. lower panel of Fig. 5.2).

All simulations to-date agree that no massive and stable discs form for initial
models of neutron stars that are uniformly rotating and when a polytropic EOS
with 1 ≤ N ≤ 2 is used. The results in [1] corroborate this view and in turn imply
that the collapse of a rapidly rotating old and cold neutron star cannot lead to the
formation of the central engine believed to operate in a gamma-ray burst, namely a
rotating black hole surrounded by a centrifugally supported, self-gravitating torus.
Relativistic simulations with more appropriate initial data, accounting in particular
for the extended envelope of the massive progenitor star which is essential in the so-
called collapsar model of gamma-ray bursts [105], will be necessary to shed light
on the mechanism responsible for such events.

5.3.2 Dynamics of the Horizons

In order to investigate the formation of a black hole in a numerical simulation, one
can use horizon finders, which compute the apparent horizon and the event horizon.
The apparent horizon, which is defined as the outermost trapped surface (a closed
surface on which all outgoing photons normal to it have zero expansion), is calcu-
lated at every time step and its location is used to set up the excised region inside
the horizon.

In contrast, the event horizon, which is an expanding null surface composed of
photons which will eventually find themselves trapped, is computed a posteriori,
once the simulation is finished, by reconstructing the full spacetime from the 3D data
each simulation produces. In stationary black hole systems, where no mass-energy
falls into the black hole, the apparent and event horizons coincide, but generally
(in dynamical spacetimes) the apparent horizon lies inside the event horizon. In
the Cactus framework, one can use the fast solver of Thornburg [95] to locate the
apparent horizon at every time step, and the level-set finder of Diener [106] to locate
the event horizon after the simulation has been completed and the data produced is
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post-processed. In the collapse simulations presented in [1] the event horizon rapidly
grows to its asymptotic value after formation. With a temporal gap of ∼10 M after
the formation of the event horizon, the apparent horizon is found and then it rapidly
approaches the event horizon, always remaining within it.

A simple method for computing the black hole mass is to note that, for a station-
ary Kerr black hole, the mass can be found directly in terms of the event-horizon
geometry as

M =
Ceq

4π
, (5.24)

where Ceq ≡
∫ 2π

0
√

gφφdφ is the proper equatorial circumference. Provided there
is a natural choice of equatorial plane, it is expected that, as the black hole settles
down to the Kerr solution, Ceq will tend to the correct value. However, as numerical
errors build up at late times, this asymptotic regime is only reached with a limited
accuracy.

The computation of the black hole mass, M, coming from the use of (5.24), is
shown in Fig. 5.4, which presents the evolution of the event-horizon mass M =
Ceq/4π for models D1 and D4. Clearly, as the equatorial circumference grows, the
agreement with the expected ADM mass improves. The level-set approach of [106],
in fact, needs initial guesses for the null surface, which converge exponentially to
the correct event-horizon surface for decreasing times, hence introduce a system-
atic error in the calculation of the event horizon at late times. In Fig. 5.4, different

Fig. 5.4 Evolution of the event-horizon mass M = Ceq/4π for models D1 and D4 [1]. Different
lines refer to the different initial guesses for the null surface and are numbered 0, 1 and 2. Note
that they all converge exponentially to the correct event-horizon surface for decreasing times
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lines refer to the different initial guesses and are numbered “0”, “1” and “2”, re-
spectively. All choices lead to the same mass determination. Additional methods for
determining the mass and angular momentum of black holes formed during collapse
are presented in detail in [1].

5.4 Black Hole Formation Through Non-axisymmetric
Instabilities in Supermassive Stars

In a recent investigation of the collapse of differentially rotating supermassive stars,
Saijo [42] focused on a sequence of relativistic N = 3 polytropes with a parameter-
ized rotation law of the commonly used form j(Ω) = Ã2(Ωc −Ω), where Ωc is the
angular velocity at the center, and the parameter Ã specifies the degree of differen-
tial rotation (Ã → ∞ is uniform rotation). The selected sequence was specified by
a constant central density of ρc = 3.38× 10−6 (in units of K = G = c = 1) and by
the choice Ã/re = 1/3, where re denotes the equatorial coordinate radius. To exam-
ine the indirect collapse by fragmentation of a polytrope with toroidal shape, Zink
et al. [2] chose a model with the same central density as in Saijo’s [42] models, but
with a ratio of polar to equatorial coordinate radius rp/re = 0.24 (hereafter called
the reference model). The ratio of rotational kinetic energy to gravitational binding
energy for this model was T/|W | = 0.227. While the critical limit for the dynam-
ical f-mode instability in uniform density, uniformly rotating Maclaurin spheroids
is (T/|W |)dyn = 0.2738 (e.g., [107]), recent investigations of the stability of soft
(N ∼ 3) differentially rotating polytropes in Newtonian gravity [46, 61, 62, 108]
have shown that the Maclaurin approximation is inappropriate for such systems,
and generally find the critical (T/|W |)dyn to be below the Maclaurin value. Con-
sequently, quasi-toroidal configurations with (T/|W |)dyn � 0.27 can be unstable to
non-axisymmetric perturbations and this was the case for the model examined in [2].
In fact, non-axisymmetric instabilities in supermassive stars can lead to a new form
of black hole formation.

5.4.1 Quasi-toroidal Polytropes

Equilibrium models of supermassive stars in which non-axisymmetric instabilities
are present are general relativistic, differentially rotating polytropes, which are usu-
ally constructed as quasi-spherical objects (i.e., their density maximum is at the
center). In [2] it was found that quasi-toroidal models also exist: Such models have
at least one isodensity surface which is homeomorphic to a torus. To construct equi-
librium polytropes of this kind, an extended version of the rns code was used [101].
To compute an equilibrium polytrope, the central rest-mass density ρc, the coordi-
nate axes ratio rp/re and a barotropic equation of state, P(ρ), need to be speci-
fied. For differentially rotating models, the rotation law adopted in [2, 3] requires
the additional parameter A = Ã/re. The rns code solves the equilibrium equations
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iteratively, starting from a nonrotating TOV system. When two different branches of
models are present (i.e., both a quasi-spherical branch and a quasi-toroidal branch) it
may be necessary to select a number of intermediate attractors as trial fields, in order
to converge to the desired model. Some models are thus constructed by first obtain-
ing a specific quasi-toroidal model, and then moving in parameter space along the
quasi-toroidal branch to the target model. Equilibrium models thus exist in a four-
dimensional parameter space (Γ ,ρc,A,rp/re). While in [2] a reference model was
studied, in [3] sequences in ρc, Γ and rp/re containing this model were studied,
focusing on the important case Γ = 4/3, since it approximately represents a radia-
tion pressure-dominated star. Most polytropes were constructed with a meridional
grid resolution of nr = 601 radial zones and ncosθ = 301 angular zones, a maxi-
mal harmonic index �max = 10 for the angular expansion of the Green’s functions
and a solution accuracy of 10−7. Selected models were tested for convergence with
resolutions up to nr = 2401, ncosθ = 1201 and �max = 20.

5.4.2 Numerical Setup

All simulations in [2, 3] were performed within the Cactus/Whisky framework
in full general relativity. The only assumption on symmetry was a reflection in-
variance with respect to the equatorial plane of the star. The gauge freedom was
fixed by the generalized “1+log” slicing condition for the lapse function [109] with
f (α) = 2/α and by the hyperbolic-like condition suggested in [110] for the shift
vector. In addition, the Carpet driver [98] was used for mesh refinement in Cactus.
The hydrodynamics part of the field equations was evolved using the high-resolution
shock-capturing PPM-Marquina implementation in the Whisky module [1, 68], and
an ideal-fluid equation of state.

The reference model has a quasi-toroidal structure, with an off-center density
maximum, but a non-zero central density. After mapping the model to the hierarchy
of Cartesian grids provided by Carpet, a small cylindrical density perturbation of
the form

ρ(x) → ρ(x)

[
1+

1
re

4

∑
m=1

λmB f (ϖ)sin(mφ)

]
(5.25)

was added to the equilibrium polytrope. Here, m ∈ {1,2,3,4}, λm is either 0 or 1,
ϖ is the cylindrical radius and f (ϖ) is a radial trial function. Experiments were
made with f (ϖ) = ϖ and f (ϖ) = ϖm, but the exact choice was found not to affect
the results significantly. This is true quite generally, since one only requires the trial
function to have some reasonable overlap with a set of quasi-normal modes. When a
perturbation with λi = δi j, j ∈ {1,2,3,4} leads to an instability with the associated
number of node lines in the equatorial plane, this instability is denoted with the
term m = j mode (and the corresponding perturbation m = j perturbation) ( this is
a simplification, since each m is expected to represent a discrete, infinite spectrum
of modes [111], from which, however, only the fastest-growing unstable member is
observed in numerical simulations).
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After perturbing the model, the constraint equations were not solved again, since
the amplitude B was chosen such that the violation of the constraints by the ini-
tial perturbation was about an order of magnitude smaller than that caused by the
systematic error induced by the m = 4 symmetry of the Cartesian grid. A fixed box-
in-box mesh refinement with five levels was used to accurately resolve the central
high-density ring. The three innermost grids covered the star, while the two outer-
most ones pushed the outer boundaries to 6.4re. The typical resolution used was
65× 65× 33 per grid patch, leading to a central resolution of ∼10−2re. However,
runs with 89×89×45, 97×97×52 and 131×131×65 points per grid patch were
also performed to test the resolution dependence of the solution. In order to deter-
mine the amplitude of a specific mode in the equatorial plane, a projection onto
Fourier modes at certain coordinate radii [112, 113] was performed (notice that, as
soon as the system starts to deviate significantly from axisymmetry, care must be
taken in interpreting the results since the interpretation of the projection curve as a
circle assumes ∂φ to be a Killing vector).

5.4.3 Dynamical Evolution of the Reference Model

Parameters and integral quantities for the reference model used in [2, 3] are shown
in Table 5.2, while Table 5.3 lists the parameters for different simulation setups. For
setup N, the evolution of the moduli of the equatorial Fourier components at the
initial radius of highest density is shown in Fig. 5.5. It is evident that, initially, the
m = 4 component (thin dotted line) induced by the Cartesian grid is dominant. How-
ever, the star is unstable to m = 1 (thick solid line) and m = 2 (thick dashed line),
and these modes consequently grow into the nonlinear regime, their e-folding times
being rather close. Setups M1 and M2 are variants of setup N, where only a specific
unstable mode was imposed. An approximate measurement of the e-folding times

Table 5.2 Parameters and integral quantities of the reference quasi-toroidal polytrope [2]. The
first four quantities are parameters, while Ωe is the angular velocity at the equator and ΩK is the
associated Keplerian velocity of the same model

Polytropic index Γ Γ 4/3
Central rest-mass density ρc 3.38×10−6

Degree of differential rotation A 1/3
Coordinate axes ratio rp/re 0.24
Density ratio ρmax/ρc 16.71
ADM mass M 7.003
Rest mass M0 7.052
Equatorial inverse compactness Re/M 11.71
Angular momentum J 52.20
Normalized angular momentum J/M2 1.064
Kinetic over binding energy T/|W | 0.227
(See caption) Ωe/ΩK 0.467
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Table 5.3 Different setups for the dynamical evolution of the reference model [2]. Adaptive mesh
refinement (AMR) was used to investigate black hole formation

Setup Patch Refinement Perturbation
resolution levels Modes Amplitude AMR

65×65×33 5 m = 1−4 B = 10−3 no
H1 89×89×45 5 m = 1−4 B = 10−3 no
H2 97×97×52 5 m = 1−4 B = 10−3 no
H3 131×131×65 5 m = 1−4 B = 10−3 no
I1 65×65×33 5 m = 1−4 B = 10−4 no
I2 65×65×33 5 none B = 0 no
M1 65×65×33 5−12 m = 1 B = 10−3 yes
M2 65×65×33 5−12 m = 2 B = 10−3 yes

and mode frequencies was obtained within an error of 5−10%, related to ambigui-
ties in defining the interval of extraction. All setups showed consistent results within
this uncertainty. In units of the dynamical timescale, (defined as tD = re

√
re/M), the

e-folding times were ≈ 0.93tD for m = 1 and ≈ 0.84tD for m = 2, respectively. Mode
frequencies were ≈ 3.05/tD for m = 1 and ≈ 3.31/tD for m = 2, respectively.

Fig. 5.5 Time evolution of the mode amplitudes in the standard grid setup N [2]. The amplitudes
were obtained from a Fourier decomposition of the density profile on the equatorial plane circle
at ϖ = 0.25re, the initial radius of highest density. Shown are the m = 1 (thick solid line), m = 2
(thick dashed line), m = 3 (thin dash-dotted line) and m = 4 (thin dotted line) mode amplitudes
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To establish whether a black hole is formed by a fragment it is necessary to cover
the fragment with significantly more resolution than affordable by fixed mesh re-
finement. Hence, [2] implemented a simplified adaptive mesh refinement scheme,
in order to follow the system to black hole formation: In this scheme, a tracking
function (provided by the location of a density maximum) was used to construct a
locally fixed hierarchy of grids moving with the fragment. Additional refinement
levels were switched on during contraction, until an apparent horizon was found.
Since the e-folding times for m = 1 and m = 2 turned out to be close, the number
and interaction behavior of the fragments in the non-linear regime depended sensi-
tively on the initial perturbation. Thus setups M1 and M2 were used to follow the
formation and evolution of a specific number of fragments.

The time evolution of the density in the equatorial plane for setup M1 in [2] is
shown in Fig. 5.6. While the initial model is axisymmetric, it has already developed
a strong m = 1 type deviation from axisymmetry at t = 6.43tD, which consequently
evolves into a collapsing off-center fragment. At t = 7.45tD, an apparent horizon was
found, using the numerical code described in [114]. The horizon was centered on the
collapsing fragment at a coordinate radius of rAH ≈ 0.16re and had an irreducible
mass of MAH ≈ 0.24Mstar. Its coordinate representation was significantly deformed:
its shape was close to ellipsoidal, with an axes ratio of ∼2 : 1.1 : 1. The apparent
horizon was covered by three refinement levels and 50–100 grid points along each
axis.

Fig. 5.6 Time evolution of the equatorial plane density for setup M1 [2]. Shown are isocontours
of the logarithm of the rest-mass density. The four snapshots extend to 0.37re and are taken at
t/tD = 0, 6.43, 7.14, and 7.45, respectively. They show the formation and collapse of the fragment
produced by the m = 1 instability. The last slice contains an apparent horizon demarked by the thick
white line. Note that the shades of grey used for illustration are adapted to the current maximal
density at each time, and that darker shades denote higher densities
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Fig. 5.7 Time evolution of
the equatorial plane density
for setup M2 [2]. The snap-
shots are at the same times as
in Fig. 5.6. In this case, two
fragments formed. Constraint
violations forced a termina-
tion of the simulation before
apparent horizons could be
located

The evolution of the setup M2 in [2] is shown in Fig. 5.7. Two orbiting and
collapsing fragments are formed. However, even with the adaptive mesh refinement
method, constraint violations prevented the simulation to continue until formation
of apparent horizons. Cell-based adaptive mesh refinement, a better choice of gauge,
or methods based on numerical analysis (e.g., [115]) might be required in this case.

5.4.4 Models of Γ=4/3 Polytropes with Fixed Central
Rest-Mass Density

The influence of certain parameters on the stability properties of the relativis-
tic quasi-toroidal polytropes can be studied by following sequences of models,
which contain the reference models, along which specific parameters are varied.
In [3] models in a two-dimensional parameter subspace, with fixed Γ = 4/3 and
ρc = 10−7, which differ in the rotation law parameter, A, and in the axes ratio,
rp/re, were discussed. The choice of the central density did not seem to affect the
almost exponential development of a non-axisymmetric unstable mode in the linear
regime considerably, even for very compact quasi-toroidal polytropes. Models with
ρc = 10−7 are already quite compact, with Re/M ≈ 10 . . .100 and rp/M ≈ 2 . . .70.

To investigate the stability of these models, the initial data have been evolved,
imposing a perturbation of the form given by (5.25) with λm = 1, and with a res-
olution of 65×65×33 grid points in the outer patches and 97×97×49 in the in-
nermost patch. Selected models were tested against individual m = j perturbations
with λm = δm j, with different resolutions, and different densities of the artificial
atmosphere, to test consistency and convergence. Also, central rest-mass densities
different from 10−7 were investigated in a few models.
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Fig. 5.8 Stability of quasi-toroidal models with ρc = 10−7 [3]. A Latin number denotes the highest
azimuthal order of the unstable modes, i.e., “I” for m = 1 unstable, “II” for m = 1,2 unstable, and
“III” for m = 1,2,3 unstable. Models denoted by “(I)” are either long-term unstable with growth
times τ � tdyn or stable, and models denoted by “A” exhibit an axisymmetric instability. The line
in the lower left corner is the approximate location of the sequence J/M2 = 1, and the three lines
inside the quasi-toroidal region are the approximate locations of sequences with T/|W | = 0.14
(right), T/|W | = 0.18 (middle), and T/|W | = 0.26 (left)

Figure 5.8 gives an overview of the stability properties of the selected models.
The Latin numbers “I” to “III” refer to the highest m with an unstable mode, i.e.,
in addition to the reference polytrope, which belongs to the class “II,” there exist
models which are unstable to an m = 3 perturbation, and models which appear to
be stable against m = 2. The models denoted with an “A” were found to be unsta-
ble to an axisymmetric mode and collapse before any non-axisymmetric instability
develops. Finally, the models marked with “(I)” could be either stable or long-term
unstable with a growth time τ � tdyn. Each model was evolved for up to 10 tdyn

to determine its stability. This limit is arbitrary, but imposed by the significant re-
source requirements of these simulations. If no mode amplitude exceeds the level
of the m = 4 noise during this time, the model is marked with a “(I)” (this does not
imply that the model is actually stable, it could be unstable to an m = 1 mode with
slow growth rate). The additional lines in Fig. 5.8 are approximate isolines of the
functions T/|W | for the values 0.14, 0.18, and 0.26 and of the function J/M2 for the
value 1. As long as the models do not rotate too differentially, T/|W | still seems to
be a reasonable indicator of the non-axisymmetric stability of the polytropes, even
though they are quasi-toroidal and relativistic.

The nature of the non-linear behaviour of models exhibiting a non-axisymmetric
instability is indicated in Fig. 5.9, where the evolution of the minimum of the lapse
function is used to classify the models. Models denoted by “B” have a global mini-
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Fig. 5.9 Remnants of the models in Fig. 5.8, which are unstable with respect to non-axisymmetric
modes [3]. The non-linear behaviour has been analyzed by observing the evolution of the function
minα . Models which show a minimum in this function are marked by “B” for “bounce,” while
models exhibiting an exponential collapse of the lapse are marked by “C” for “collapse”

mum in the lapse, while models denoted by “C” do not. Given that the compactness
of the models increases with smaller axes ratios in this figure, one can expect that a
black hole forms for each member of the “C” class. To determine this uniquely, each
of these models should be tested using, e.g., the adaptive mesh-refinement technique
presented in [2]. Note that, models denoted by “B” might actually form a black hole
by delayed collapse.

5.4.5 Nature of the Non-axisymmetric, Dynamical Instability

In order to determine whether the non-axisymmetric, dynamical instability is related
to its pattern speed coinciding with the local angular velocity of matter somewhere
inside the star, one can define a coordinate angular velocity of matter in the initial
equilibrium model, by

Ω(ϖ) ≡ αvφ −βφ . (5.26)

This can be compared to the mode pattern speed 1/mdφ/dt (approximately valid
for the whole star) to determine whether a certain mode has a corotation point. In
Fig. 5.10, the angular velocity is plotted in addition to the approximate location of
the m = 1 and m = 2 pattern speeds, for the reference model. Both modes have
corotation points: the m = 1 mode near the radius of highest density at 0.25Re and
the m = 2 mode near 0.5–0.6 Re. This gives support to the arguments presented in
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Fig. 5.10 Angular velocity of the reference polytrope in the equatorial plane, and approximate
location (with error bar) of the pattern speed of the m = 1 mode (upper rectangle), and the
m = 2 mode (lower rectangle) [3]. Both modes have corotation points inside the star, where non-
axisymmetric instabilities could develop

[43], where the existence of low-T/|W | and spiral-arm instabilities in differentially
rotating polytropes are connected to the existence of corotation points.
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96. I. Hawke, F. Löffler and A. Nerozzi, Phys. Rev. D 71, 104006 (2005). 187
97. M. J. Berger and J. Oliger, J. Comput. Phys. 53, 484 (1984). 188
98. E. Schnetter, S. H. Hawley and I. Hawke, Class. Quant. Grav. 21(6), 1465 (2004). 188, 198
99. http://www.carpetcode.org. 188

100. J. E. Tohline, R. H. Durisen and M. McCollough, Astrophys. J. 298, 220 (1985). 189
101. N. Stergioulas and J. L. Friedman, Astrophys. J. 444, 306 (1995). 189, 197
102. N. Stergioulas and J. A. Font, Phys. Rev. Lett. 1148, 2001 (86). 189, 191
103. J. A. Font, N. Stergioulas and K. D. Kokkotas, Mon. Not. R. Astron. Soc. 313, 678 (2000). 191
104. G. B. Cook, Living Rev. Relativity 5, 5 (2000). 192
105. S. E. Woosley, in Proceedings of the International Workshop held in Rome, CNR headquar-

ters, ed. by E. Costa, F. Frontera, J. Hjorth (Springer, Berlin Heidelberg, 2000), p. 257. 195
106. P. Diener, Class. Quant. Grav. 20, 4901 (2003). 195, 196
107. J. L. Tassoul, Theory of Rotating Stars (Princeton University Press, 1978). 197
108. M. Saijo, Astrophys. J. 595, 352 (2003). 197
109. C. Bona, J. Massó, E. Seidel and J. Stella, Phys. Rev. Lett. 75, 600 (1995). 198
110. M. Shibata, Astrophys. J. 595, 992 (2003). 198
111. B. F. Schutz and E. Verdaguer, Mon. Not. R. Astron. Soc. 202, 881 (1983). 198
112. K. C. B. New, J. M. Centrella and J. E. Tohline, Phys. Rev. D 62, 064019 (2000). 199
113. J. De Villiers and J. Hawley, Astrophys. J. 577, 866 (2002). 199
114. J. Thornburg, Class. Quant. Grav. 21, 743 (2004). 201
115. M. Tiglio, L. Lehner and D. Neilsen, Phys. Rev. D. 70, 104018 (2004). 202



Chapter 6
Black Holes in Higher-Dimensional Gravity

N.A. Obers

Abstract This article reviews some of the recent progress in uncovering the phase
structure of black hole solutions in higher-dimensional vacuum Einstein gravity. The
two classes on which we focus are Kaluza–Klein black holes, i.e., static solutions
with an event horizon in asymptotically flat spaces with compact directions and
stationary solutions with an event horizon in asymptotically flat space. Highlights
include the recently constructed multi-black hole configurations on the cylinder and
thin rotating black rings in dimensions higher than five. The phase diagram that
is emerging for each of the two classes will be discussed, including an intriguing
connection that relates the phase structure of Kaluza–Klein black holes with that of
asymptotically flat rotating black holes.

6.1 Introduction and Motivation

The study of the phase structure of black objects in higher-dimensional gravity (see,
e.g., the reviews [1–4]) is interesting for a wide variety of reasons. First of all, it
is of intrinsic interest in gravity where the spacetime dimension can be viewed as
a tunable parameter. In this way one may discover which properties of black holes
are universal and which ones show a dependence on the dimension. We know, for
example, that the laws of black hole mechanics are of the former type, while, as will
be illustrated in this lecture, properties such as uniqueness and horizon topology
are of the latter type. In particular, recent research has revealed that as the dimen-
sion increases the phase structure becomes increasingly intricate and diverse. In this
context, another interesting phenomenon that has been observed is the existence of
critical dimensions above which certain properties of black holes can change drasti-
cally. Uncovering the phases of black holes is also relevant for the issue of classical
stability of black hole solutions as well as gravitational phase transitions between
different solutions, such as those that involve a change of topology of the event
horizon. Furthermore, information about the full structure of the static or stationary
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phases of the theory can provide important clues about the time-dependent trajecto-
ries that interpolate between different phases.

Going beyond pure Einstein gravity, there are also important motivations
originating from string theory. String/M-theory at low energies is described by
higher-dimensional theories of gravity, namely various types of supergravities. As
a consequence, black objects in pure gravity are often intimately related to black
hole/brane solutions in string theory. These charged cousins and their near-extremal
limits play an important role in the microscopic understanding of black hole en-
tropy [5] and other physical properties (see also, e.g., the reviews [6, 7]) . A related
application is in the gauge/gravity correspondence [8, 9], where the near-extremal
limits of these black branes give rise to phases in the corresponding dual non-
gravitational theories at finite temperature. In this way, finding new black objects
can lead to the prediction of new phases in these thermal non-gravitational theories
(see, e.g., [10, 11]). Finally, if large extra dimensions [12, 13] are realized in Na-
ture, higher-dimensional black holes would be important as possible objects to be
produced in accelerators or observed in the Universe (see, e.g., the review [14]).

In the past 7 years, the two classes that have been studied most intensely are

– stationary solutions with an event horizon in asymptotically flat space
– static solutions with an event horizon in asymptotically flat spaces with compact

directions

For brevity, we will often refer in this lecture to the first type as rotating black
holes and the second type as Kaluza–Klein black holes. In this nomenclature, the
term ‘black hole’ stands for any object with an event horizon, regardless of its
horizon topology (i.e., not necessarily spherical). We also allow for the possibil-
ity of multiple disconnected event horizons, to which we refer as multi-black hole
solutions.

For rotating black holes most progress in recent years has been in five dimen-
sions. Here, it has been found that in addition to the Myers–Perry (MP) black
holes [15], there exist rotating black rings [2, 16] and multi-black hole solutions
like black Saturns and multi-black rings [17–20] including those with two indepen-
dent angular momenta [21–23]. All of these are exact solutions which have been
obtained with the aid of special ansätze [24, 25] based on symmetries and inverse
scattering techniques [26–29]. We refer in particular to the review [2] for further
details on the black ring in five dimensions and [18] for a discussion of the phase
diagram in five dimensions for the case of rotating black holes with a single angular
momentum. Moreover, the very recent review [4] provides a pedagogical overview
of black holes in higher dimensions, including the more general phase structure of
five-dimensional stationary black holes and solution-generating techniques.

Only recently has there been significant progress in exploring the phase structure
of stationary solutions in six and more dimensions [30]. This includes the explicit
construction of thin black rings in six and higher dimensions [30] based on a per-
turbative technique known as matched asymptotic expansion [31–35]. Furthermore,
in [30] the correspondence between ultra-spinning black holes [36] and black mem-
branes on a two-torus was exploited, to take steps toward qualitatively completing
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the phase diagram of rotating blackfolds with a single angular momentum. That has
led to the proposal that there is a connection between MP black holes and black
rings, and between MP black holes and black Saturns, through merger transitions
involving two kinds of ‘pinched’ black holes. More generally, this analogy suggests
an infinite number of pinched black holes of spherical topology leading to a compli-
cated pattern of connections and mergers between phases. The proposed phase di-
agram was obtained by importing the present knowledge of phase of Kaluza–Klein
black holes on a two-torus.

For Kaluza–Klein (KK) black holes, most progress has been for the simplest
KK space, namely Minkowski space times a circle. The simplest static solution
of Einstein gravity (in five or more dimensions) in this case is the uniform black
string, which has a factorized form consisting of a Schwarzschild–Tangherlini black
hole and an extra flat (compactified) direction. But there are many more phases of
KK black holes, which in recent years have been uncovered by a combination of
perturbative techniques (matched asymptotic expansion), numerical methods and
exact solutions. These phases include non-uniform black strings (see [37–42] for
numerical results), localized black holes (see [31–35, 43–45] for analytical results
and [46–48] for numerical solutions) and bubble-black hole sequences [49]. Here
recent progress [35] includes the construction of small mass multi-black hole con-
figurations localized on the circle which in some sense parallel the multi-black hole
configurations obtained for rotating black holes.

All of these static, uncharged phases can be depicted in a two-dimensional phase
diagram [50–52] parameterized by the mass and tension. Mapping out this phase
structure has consequences for the endpoint of the Gregory–Laflamme instabil-
ity [53, 54] of the neutral black string, which is a long wavelength instability that in-
volves perturbations with an oscillating profile along the direction of the string. The
non-uniform black string phase emerges from the uniform black string phase at the
Gregory–Laflamme point, which is determined by the (time-independent) thresh-
old mode where the instability sets in. An interesting property that has been found
in this context is the existence of a critical dimension [39] where the transition of
the uniform black string into the non-uniform black string changes from first order
into second order. Moreover, it has been shown [41, 55–57] that the localized black
hole phase meets the non-uniform black string phase in a horizon-topology chang-
ing merger point. Turning to more recent developments, we note that the new multi-
black hole configurations of [35] raise the question of existence of new non-uniform
black strings. Furthermore, analysis of the three black hole configuration [35] sug-
gests the possibility of a new class of static lumpy black holes in Kaluza–Klein
space.

Many of the insights obtained in this simplest case are expected to carry over as
we go to Kaluza–Klein spaces with higher-dimensional compact spaces [3, 58, 59],
although the degree of complexity in these cases will increase substantially.

In summary, recent research has shown that in going from four to higher di-
mensions in vacuum Einstein gravity a very rich phase structure of black holes is
observed with fascinating new properties, such as symmetry breaking, new hori-
zon topologies, merger points and in some cases infinite non-uniqueness. Obviously
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one of the reasons for this richer phase structure is that as the dimension increases
there are many more degrees of freedom for the metric. Furthermore, for stationary
solutions every time the dimension increases two units, there is one more orthogo-
nal rotation plane available. Another reason is the existence of extended objects in
higher dimensions, such as black p-branes (including the uniform black string for
p = 1). Finally, allowing for compact directions introduces extra scales, and hence
more dimensionless parameters in the problem.

The reasons that make the phase structure so rich, such as the increase of the de-
grees of freedom and the appearance of fewer symmetries, are those that also make
it hard to uncover. As the overview above illustrates, there has been remarkable
progress in recent years, but we have probably only seen a glimpse of the full phase
structure of black holes in higher-dimensional gravity. However, the cases consid-
ered so far will undoubtedly provide essential clues toward a more complete picture
and will form the basis for further developments into this fascinating subject.

The outline of these lectures is as follows. To set the stage, we first give in
Sect. 6.2 a brief introduction to known uniqueness theorems for black holes in pure
gravity and some prominent cases of non-uniqueness in higher dimensions. We also
give a short overview of some of the most important techniques that have been used
to obtain black hole solutions beyond four dimensions. Then we review the current
status for Kaluza–Klein black holes in Sects. 6.3 and 6.4. In particular, Sect. 6.3
presents the main results for black objects on the cylinder with one event horizon as
well as results for Kaluza–Klein black holes on a two-torus, which will be relevant
in the sequel. Section 6.4 discusses the recently constructed multi-black hole con-
figurations on the cylinder. Then the focus will be turned to rotating black holes in
Sects. 6.5 and 6.6. The five-dimensional case will be very briefly reviewed, but most
attention will be given to the recent progress for six and higher dimensions, includ-
ing the construction of thin black rings in Sect. 6.5. We then discuss in Sect. 6.6 the
proposed phase structure for rotating black holes in six and higher dimensions with
a single angular momentum. The resulting picture builds on an interesting connec-
tion to the phase structure of Kaluza–Klein black holes discussed in the first part.
We end with a future outlook for the subject in Sect. 6.7.

6.2 Uniqueness Theorems and Going Beyond Four Dimensions

In this section we first review known black hole uniqueness theorems in Einstein
gravity as well as the most prominent cases of non-uniqueness of black holes in
higher dimensions. We also give an overview of some of the most important tech-
niques that have been used in finding black hole solutions beyond four dimensions.

6.2.1 Black Hole (Non-)uniqueness

The purpose of this lecture is to explore possible black hole solutions of the vac-
uum Einstein equations Rμν = 0 in dimensions D ≥ 4. In four-dimensional vacuum



6 Black Holes in Higher-Dimensional Gravity 215

gravity, a black hole in an asymptotically flat spacetime is uniquely specified by the
ADM mass M and angular momentum J measured at infinity [60–63]. In particular,
in the static case the unique solution is the four-dimensional Schwarzschild black
hole solution and for the stationary case it is the Kerr black hole:

ds2 = −dt2 +
μr
Σ

(dt +asin2 θdφ)2 +
Σ
Δ

dr2 +Σdθ 2 +(r2 +a2)sin2 θdφ 2,

(6.1a)

Σ = r2 +a2 cos2 θ , Δ = r2 −μr +a2 , μ = 2GM , a =
J
M

. (6.1b)

For J = 0 this clearly reduces to the Schwarschild black hole, and the angular
momentum is bounded by a critical value J ≤ GM2 (the Kerr bound) beyond which
there appears a naked singularity. The bound is saturated for the extremal Kerr so-
lution which is non-singular. The uniqueness in four dimensions fits nicely with the
fact that black holes in four dimensions are known to be classically stable [64–66]
(for further references see also the lecture [67] at this school).

The generalization of the Schwarschild black hole to arbitrary dimension D was
found by Tangherlini [68] and is given by the metric

ds2 = − f dt2 + f−1dr2 + r2dΩ 2
D−2 , f = 1− rD−3

0

rD−3 . (6.2)

Here dΩ 2
D−2 is the metric element of a (D− 2)-dimensional unit sphere with vol-

ume ΩD−2 = 2π(D−1)/2/Γ [(D − 1)/2]. Since the Newtonian potential Φ in the
weak-field regime r → ∞ can be obtained from gtt = −1 − 2Φ , this shows that
Φ = −rD−3

0 /(2rD−3). The mass of the black hole is then easily obtained as

M =
ΩD−2(D−2)

16πG
rD−3

0 , (6.3)

by using ∇2Φ = 8πG D−3
D−2 Ttt and M =

∫
dxD−1Ttt where Ttt is the energy density.

Uniqueness theorems [69, 70] for D-dimensional (D > 4) asymptotically flat space-
times state that the Schwarzschild–Tangherlini black hole solution is the only static
black hole in pure gravity. The classical stability of these higher-dimensional black
hole solutions was addressed in [71–73].

The generalization of the Kerr black hole (6.1) to arbitrary dimension D was
found by Myers and Perry [15], who obtained the metric of a rotating black hole
with angular momenta in an arbitrary number of orthogonal planes. The Myers–
Perry (MP) black hole is thus specified by the mass and angular momenta Jk where
k = 1 . . .r with r = rank(SO(D − 2)). For MP black holes with a single angular
momentum, there is again a Kerr bound J2 < 32GM3/(27π) in the five-dimensional
case, but for six and more dimensions the angular momentum is unbounded, and
the black hole can be ultra-spinning. This fact will be important in Sects. 6.5 and
6.6. When there are more than one angular momenta one needs at least one or two
zero angular momenta to have an ultra-spinning regime depending on whether the
dimensions are even or odd [36].
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Despite the absence of a Kerr bound in six and higher dimensions, it was argued
in [36] that in six or higher dimensions the Myers–Perry black hole becomes un-
stable above some critical angular momentum, thus recovering a dynamical Kerr
bound. The instability was identified as a Gregory–Laflamme instability by show-
ing that in a large angular momentum limit the black hole geometry becomes that
of an unstable black membrane. This result is also an indication of the existence of
new rotating black holes with spherical topology, where the horizon is distorted by
ripples along the polar direction. This will be discussed in more detail in Sect. 6.6.
Finally, we note that all of the black hole solutions discussed so far in this section
have an event horizon of spherical topology SD−2.

Contrary to the static case, there are no uniqueness theorems for non-static black
holes in pure gravity with D > 4.1 On the contrary, there are known cases of non-
uniqueness. The first example of this was found by Emparan and Reall [16] and
occurs in five dimensions for stationary solutions in asymptotically flat spacetime:
for a certain range of mass and angular momentum there exist both a rotating MP
black hole with S3 horizon [15] and rotating black rings with S2 ×S1 horizons [16].

As mentioned in the introduction, following the discovery of the rotating black
ring [16], further generalizations of these to black Saturns and multi-black rings
have been found in five dimensions. It is possible that essentially all five-dimensional
black holes (up to iterations of multi-black rings) with two axial Killing vectors have
been found by now,2 but the study of non-uniqueness for rotating black holes in six
and higher dimensions has only recently begun (see Sects. 6.5 and 6.6).

Another case where non-uniqueness has been observed is for Kaluza–Klein black
holes, in particular for black hole solutions that asymptote to Minkowski space
M D−1 times a circle S1. Here, the simplest solution one can construct is the uniform
black string which is the (D−1)-dimensional Schwarzschild–Tangherlini black hole
(6.2) plus a flat direction, which has horizon topology SD−3 ×S1. However, at least
for a certain range of masses, there are also non-uniform black strings and black
holes that are localized on the circle, both of which are non-translationally invariant
along the circle direction. All of these solutions, which have in common that they
posses an SO(D− 2) symmetry, will be further discussed in Sect. 6.3. If one al-
lows for disconnected horizons, then also multi-black hole configurations localized
on the circle are possible, giving rise to an infinite non-uniqueness. These will be
discussed in Sect. 6.4. In addition there are more exotic black hole solutions, called
bubble-black hole sequences [49], but for simplicity these will not be further dealt
with in this lecture.

More generally, for black hole solutions that asymptote to Minkowski space
M D−p times a torus T

p, the simplest class of solutions with an event horizon
is black p-branes. The metric is that of a (D − p)-dimensional Schwarzschild–
Tangherlini black hole (6.2) plus p flat directions. Beyond that there will exist many
more phases, which have only been partially explored. As an example, we discuss in
Sect. 6.3.4 the phases of KK black holes on T

2 that follow by adding a flat direction

1 See [74] for recent progress in this direction.
2 See [75, 76] for work on how to determine uniquely the black hole solutions with two symmetry
axes.
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to the phases of KK black holes on S1. These turn out to be intimately related to the
phase structure of rotating black holes for D ≥ 6, as we will see in Sect. 6.6.

6.2.2 Overview of Solution Methods

We briefly describe here the available methods that have been employed in order
to find the new solutions that are the topic of this lecture. The main techniques for
finding new solutions are as follows.

6.2.2.1 Symmetries and Ansätze

It is often advantageous to use symmetries and other physical inputs to constrain
the form of the metric for the putative solution. In this way one may be able to
find an ansatz for the metric that enables to solve the vacuum Einstein equations
exactly. This often involves also a clever choice of coordinate system, adapted to
the symmetries of the problem. This ingredient is also important in cases where the
Einstein equations can only be solved perturbatively around a known solution (see
below).

As an example we note the generalized Weyl ansatz [24, 25] for static and
stationary solutions with D− 2 commuting Killing vectors, in which the Einstein
equations simplify considerably. For the static case, this ansatz is, for example,
relevant for bubble-black hole sequences [49] in five- and six-dimensional KK
space. For the stationary case, it is relevant for rotating black ring solutions in
five-dimensional asymptotically flat space. Another example relevant for black
holes and strings on cylinders is the SO(D− 2)-symmetric ansatz of [43, 52, 56]
based on coordinates that interpolate between spherical and cylindrical coordi-
nates [43]. This has been used to obtain the metric of small black holes on the
cylinder [31, 35].

6.2.2.2 Solution-Generating Techniques

Given an exact solution there are cases where one can use solution-generating tech-
niques, such as the inverse scattering method, to generate other new solutions. See,
for example, [26–29] where this method was first used for stationary black hole
solutions in five dimensions, and [77] for a further solution-generating mechanism.

6.2.2.3 Matched Asymptotic Expansion

In some cases one knows the exact form of the solution in some corner of the moduli
space. Then one may attempt to find the solution in a perturbative expansion around
this (limiting) known solution. This method, called matched asymptotic expansion
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[30–35], has been very successful. It applies to problems that contain two (or more)
widely separated scales. In particular for black holes, this means that one solves
Einstein equations perturbatively in two different zones, the asymptotic zone and
the near-horizon zone and one thereafter matches the solution in the overlap region.
One example is that of small black holes on a circle, where the horizon radius of the
black holes is much smaller than the size of the circle (see in particular Sect. 6.4).
Another example is that of thin black rings, where the thickness of the ring is much
smaller than the radius of the ring (see Sect. 6.5).

6.2.2.4 Numerical Techniques

Since in many cases the Einstein equations become too complicated to be amenable
to analytical methods, even after using symmetries and ansätze, the only way to
proceed in the non-linear regime is to try to solve them numerically. For KK black
holes, especially, these techniques have been successfully applied for non-uniform
black strings [37–42] and localized black holes [46–48] (see Sect. 6.3).

6.2.2.5 Classical Effective Field Theory

There exists also a classical effective field theory approach for extended objects
in gravity [78]. This can be used as a systematic low-energy (long-distance) ef-
fective expansion which gives results only in the region away from the black hole
and so it does not provide the corrections to the metric near the horizon, but en-
ables one to compute perturbatively corrected asymptotic quantities. This has been
successfully applied in [44] to obtain the second-order correction to the thermody-
namics of small black holes on a circle. Recently, it was shown [45] that this method
is equivalent to matched asymptotic expansion where the near-horizon zone is re-
placed by an effective theory. Reference [45] also contains an interesting new appli-
cation of the method to the corrected thermodynamics of small MP black holes on a
circle.

6.3 Kaluza–Klein Black Holes

In this section we give a general description of the phases of Kaluza–Klein (KK)
black holes (see also the reviews [3, 79]). A (d + 1)-dimensional Kaluza–Klein
black hole will be defined here as a pure gravity solution with at least one event hori-
zon that asymptotes to d-dimensional Minkowski space times a circle (M d ×S1) at
infinity. We will discuss only static and neutral solutions, i.e., solutions without
charges and angular momenta. Obviously, the uniform black string is an example of
a Kaluza–Klein black hole, but many more phases are known to exist. In particular,
we discuss here the non-uniform black string and the localized black hole phase.
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Finally, in anticipation of the connection with the phase structure of rotating black
holes (discussed in Sect. 6.6) we also discuss part of the phases of KK black holes
on Minkowski space times a torus (M D−2 ×T

2).

6.3.1 Setup and Physical Quantities

For any spacetime which asymptotes to M d ×S1 we can define the mass M and the
tension T . These two asymptotic quantities can be used to parameterize the various
phases of Kaluza–Klein black holes in a (μ ,n) phase diagram, as we review below.

The Kaluza–Klein space M d ×S1 consists of the time t and a spatial part which
is the cylinder Rd−1 × S1. The coordinates of Rd−1 are x1, ...,xd−1 and the radius
r =

√
∑i(xi)2. The coordinate of the S1 is denoted by z and its circumference is

L. It is well known that for static and neutral mass distributions in flat space Rd

the leading correction to the metric at infinity is given by the mass. For a cylinder
Rd−1 × S1 we instead need two independent asymptotic quantities to characterize
the leading correction to the metric at infinity.

6.3.1.1 Mass and Tension

Consider a static and neutral distribution of matter which is localized on a cylinder
Rd−1 × S1. Assume a diagonal energy momentum tensor with components Ttt , Tzz

and Tii. Here Ttt depends on (xi,z) while Tzz depends only on xi because of momen-
tum conservation. We can then write the mass and tension as

M =
∫

dxdTtt , T = −1
L

∫
dxdTzz . (6.4)

From these definitions and the method of equivalent sources, one can obtain ex-
pressions for M and T in terms of the leading 1/rd−3 behavior of the metric com-
ponents gtt and gzz around flat space [50, 51]. See also [11, 80–84] for more on the
gravitational tension of black holes and branes.

For a neutral Kaluza–Klein black hole with a single connected horizon, we can
find the temperature T and entropy S directly from the metric. Together with the
mass M and tension T , these quantities obey the Smarr formula [50, 51]

(d −1)T S = (d −2)M−LT (6.5)

and the first law of thermodynamics [51, 52, 83]

δM = TδS +T δL . (6.6)

This equation includes a ‘work’ term (analogous to pδV ) for variations with
respect to the size of the circle at infinity.
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It is important to note that there are also examples of Kaluza–Klein black hole so-
lutions with more than one connected event horizon [35, 49, 52]. The Smarr formula
(6.5) and the first law of thermodynamics (6.6) generalize also to these cases.

6.3.1.2 Dimensionless Quantities

Since for KK black holes we have an intrinsic scale L it is natural to use it in order
to define dimensionless quantities, which we take as

μ =
16πG
Ld−2 M , s =

16πG
Ld−1 S , t = LT , n =

T L
M

. (6.7)

Here μ , s and t are the rescaled mass, entropy and temperature, respectively, and n
is the relative tension. The relative tension satisfies the bound 0 ≤ n ≤ d − 2 [50].
The upper bound is due to the strong energy condition whereas the lower bound
was found in [85, 86]. The upper bound can also be understood physically in a
more direct way from the fact that we expect gravity to be an attractive force. For a
test particle at infinity it is easy to see that the gravitational force on the particle is
attractive when n < d −2 but repulsive when n > d −2.

The program set forth in [50, 52] is to plot all phases of Kaluza–Klein black
holes in a (μ ,n) diagram. Note that it follows from the Smarr formula (6.5) and the
first law of thermodynamics (6.6) that given a curve n(μ) in the phase diagram, the
entire thermodynamics s(μ) of a phase can be obtained [50]. We also note that the
(μ ,n) phase diagram appears to be divided into two separate regions [49]. Here, the
region 0 ≤ n ≤ 1/(d−2) contains solutions without Kaluza–Klein bubbles, and the
solutions have a local SO(d − 1) symmetry and reside in the ansatz proposed in
[43, 87] and proven in [52, 56]. Solutions of this type, also referred to as black holes
and strings on cylinders, will be reviewed in Sect. 6.3.2. Because of the SO(d −1)
symmetry there are only two types of event horizon topologies: Sd−1 for the black
hole on a cylinder branch and Sd−2×S1 for the black string. The region 1/(d−2) <
n ≤ d − 2 contains solutions with Kaluza–Klein bubbles. This part of the phase
diagram, which is much more densely populated with solutions compared to the
lower part, is the subject of [49].

6.3.1.3 Alternative Dimensionless Quantities

The typical dimensionless quantities used for KK black holes in D dimensions are
those defined in (6.7). Instead of these, [30] introduced the following new dimen-
sionless quantities, more suitable for the analogy with rotating black holes (see
Sect. 6.6), by defining

�D−3 ∝
LD−3

GM
, aD−3

H ∝
SD−3

(GM)D−2 , tH ∝ (GM)
1

D−3 T . (6.8)
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In particular, the relation to the dimensionless quantities in (6.7) is given by

� = μ− 1

D−3 , aH = μ− D−2

D−3 s , tH = μ− 1

D−3 t . (6.9)

In the KK black hole literature, entropy plots are typically given as s(μ). Instead of
these one can also use (6.9) to consider the area function aH(�), which is obtained as

aH(�) = �D−2s(�−D+3) . (6.10)

We will employ these alternative quantities when we discuss KK black holes on a
torus in Sect. 6.3.4.

6.3.2 Black Holes and Strings on Cylinders

We now discuss the main three types of KK black holes that have SO(d − 1) sym-
metry, to which we commonly refer as black holes and strings on cylinders. These
are the uniform black string, the non-uniform black string and the localized black
hole. In Sect. 6.4 we will discuss in more detail the recently obtained multi-black
hole configurations on the cylinder.

6.3.2.1 Uniform Black String and Gregory–Laflamme Instability

The metric for the uniform black string in D = d +1 spacetime dimensions is

ds2 = − f dt2 + f−1dr2 + r2dΩ 2
d−2 +dz2 , f = 1− rd−3

rd−3
0

, (6.11)

where dΩ 2
d−2 is the metric element of a (d−2)-dimensional unit sphere. The metric

(6.11) is found by taking the d-dimensional Schwarzschild–Tangherlini static black
hole (6.2) solution [68] and adding a flat z direction, which is the direction parallel
to the string. The event horizon is located at r = r0 and has topology Sd−2 ×R.

6.3.2.2 Gregory–Laflamme Instability

Gregory and Laflamme found in 1993 a long wavelength instability for black strings
in five or more dimensions [53, 54]. The mode responsible for the instability prop-
agates along the direction of the string and develops an exponentially growing
time-dependent part when its wavelength becomes sufficiently long. The Gregory–
Laflamme mode is a linear perturbation of the metric (6.11) that can be written as

gμν + εhμν . (6.12)
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Here gμν stands for the components of the unperturbed black string metric (6.11),
ε is a small parameter and hμν is the metric perturbation:

hμν =ℜ
{

exp

(
Ω t
r0

+ i
kz
r0

)
Pμν(r/r0)

}
, (6.13)

where the symbol ℜ denotes the real part. The statement that the perturbation hμν
of gμν satisfies the Einstein equations of motion can be stated as the differential
operator equation

ΔLhμν = 0 , (6.14)

where (ΔL)μνρσ = −gμρgνσDκDκ + 2Rμνρσ is the Lichnerowitz operator for the
background metric gμν . The resulting Einstein equations for the GL mode can be
found, e.g., in the appendix of the review [3].3 Solution of these equations [53, 54]
shows that there is an unstable mode for any wavelength larger than the critical
wavelength

λGL =
2πr0

kc
(6.15)

for which Ω = 0 in (6.13). The values of kc for d = 4, ...,14, as obtained in
[37, 39, 53], are listed, e.g., in Table 1 of [3]. The critical wave number kc

marks the lower bound of the possible wavelengths for which there is an unsta-
ble mode and is called the threshold mode. It is a time-independent mode of the
form hc,μν ∼ exp(ikcz/r0). In particular, this suggests the existence of a static non-
uniform black string.

6.3.2.3 GL Mode of the Compactified Uniform Black String

Since we wish to consider the uniform black string in KK space, we now discuss
what happens to the GL instability when z is a periodic coordinate with period L. The
Gregory–Laflamme mode (6.13) cannot obey the correct periodic boundary condi-
tion on z if L < λGL, with λGL given by (6.15). On the other hand, for L > λGL, we
can fit the Gregory–Laflamme mode into the compact direction with the frequency
and wave number Ω and k in (6.13) determined by the ratio r0/L. Translating this
in terms of the mass of the neutral black string, one finds the critical Gregory–
Laflamme mass

μGL = (d −2)Ωd−2

(
kc

2π

)d−3

. (6.16)

For μ < μGL the Gregory–Laflamme mode can be fitted into the circle, and the
compactified neutral uniform black string is unstable. For μ > μGL, on the other
hand, the Gregory–Laflamme mode is absent, and the neutral uniform black string
is stable. For μ = μGL there is a marginal mode which signals the emergence of a

3 Various methods and different gauges have been employed to derive the differential equations for
the GL mode. See [88] for a nice summary of these, including a new derivation (see also [89]).



6 Black Holes in Higher-Dimensional Gravity 223

new branch of black string solutions which are non-uniformly distributed along the
circle. See, e.g., Table 2 in [3] for the values of μGL for 4 ≤ d ≤ 14.

The large d behavior of μGL was examined numerically in [39] and analytically in
[58]. We also note that there is an interesting correspondence between the Rayleigh–
Plateau instability of long fluid cylinders and the Gregory–Laflamme instability of
black strings [90, 91]. In particular, the critical wave numbers kRP and kc agree
exactly at large dimension d (scaling both as

√
d for d � 1).

6.3.2.4 Non-uniform Black String

It was realized in [37] (see also [92]) that the classical instability of the uniform
black string for μ < μGL implies the existence of a marginal (threshold) mode at
μ = μGL, which again suggests the existence of a new branch of solutions.

The new branch, which is called the non-uniform string branch, has been found
numerically in [37–39]. This branch of solutions has the same horizon topology
S1 × Sd−2 as the uniform string, which is expected since the non-uniform string is
continuously connected to the uniform black string. In particular, it emerges from
the uniform black string in the point (μ ,n)= (μGL,1/(d−2)) and has n < 1/(d−2).
Moreover, the solution is non-uniformly distributed in the circle direction z since
there is an explicit dependence in the marginal mode in this direction.

More concretely, considering the non-uniform black string branch for |μ −
μGL| � 1 one obtains for the relative tension the behavior

n(μ) =
1

d −2
− γ(μ−μGL)+O((μ−μGL)2) . (6.17)

Here γ is a number representing the slope of the curve that describes the non-
uniform string branch near μ = μGL (see Table 3 in [3] for the values of γ for
4 ≤ d ≤ 14 obtained from the data of [37–39, 53, 54]).

The qualitative behavior of the non-uniform string branch depends on the sign
of γ . If γ is positive, then the branch emerges at the mass μ = μGL with increasing
μ and decreasing n. If instead γ is negative the branch emerges at μ = μGL with
decreasing μ and decreasing n. To see what this means for the entropy we note that
from (6.17) and the first law of thermodynamics one finds that

snu(μ)
su(μ)

= 1− (d −2)2

2(d −1)(d −3)2

γ
μGL

(μ−μGL)2 +O((μ−μGL)3) , (6.18)

where su(μ) (snu(μ)) refers to the rescaled entropy of the uniform (non-uniform)
black string branch. It turns out that γ is positive for d ≤ 12 and negative for d ≥ 13
[39]. Therefore, as discovered in [39], the non-uniform black string branch has a
qualitatively different behavior for small d and large d, i.e., the system exhibits a
critical dimension D = 14. In particular, for d ≤ 12 the non-uniform branch near the
GL point has μ > μGL and lower entropy than that of the uniform phase, while for
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Fig. 6.1 Black hole and string phases for d = 5, drawn in the (μ,n) phase diagram. The horizontal
(dotted) line is the uniform string branch. The rightmost solid branch emanating from this at the
Gregory–Laflamme point is the non-uniform string branch and the rightmost dashed branch starting
in the origin is the localized black hole branch. The solid and dashed branches to the left are the
k = 2 copies of the non-uniform and localized branches. The results strongly suggest that the black
hole and non-uniform black string branches meet

d > 13 it has μ < μGL and higher entropy. It also follows from (6.18) that for all d
the curve snu(μ) is tangent to the curve su(μ) at the GL point.

A large set of numerical data for the non-uniform branch, extending into the
strongly non-linear regime, have been obtained in [38, 48] for six dimensions (i.e.,
d = 5), in [40] for five dimensions (i.e., d = 4) and for the entire range d ≤ 5 ≤
10 in [41]. For d = 5, these data are displayed in the (μ ,n) phase diagram [50]
of Fig. 6.1.

6.3.2.5 Localized Black Holes

On physical grounds, it is natural to expect a branch of neutral black holes in the
spacetime M d × S1 with event horizon of topology Sd−1. This branch is called
the localized black hole branch, because the Sd−1 horizon is localized on the S1

of the Kaluza–Klein space.
Neutral black hole solutions in the spacetime M 3 × S1 were found and studied

in [93–96]. However, the study of black holes in the spacetime M d ×S1 for d ≥ 4
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is relatively new. The complexity of the problem stems from the fact that such black
holes are not algebraically special [97] and moreover from the fact that the solution
cannot be found using a Weyl ansatz since the number of Killing vectors is too
small.

In [31, 32, 34] the metric of small black holes, i.e. black holes with mass μ � 1,
was found analytically using the method of matched asymptotic expansion. The
starting point in this construction is the fact that as μ → 0, one has n → 0 so
that the localized black hole solution becomes more and more like a (d + 1)-
dimensional Schwarzschild black hole in this limit. For d = 4, the second-order
correction to the metric and thermodynamics have been studied in [33]. More gen-
erally, the second-order correction to the thermodynamics was obtained in [44] (see
also [45]) for all d using an effective field theory formalism in which the structure
of the black hole is encoded in the coefficients of operators in an effective worldline
Lagrangian.

The first-order result of [31] and second-order result of [44] can be summarized
by giving the first- and second-order corrections to the relative tension n of the
localized black hole branch as a function of μ

n =
(d −2)ζ (d −2)
2(d −1)Ωd−1

μ−
(

(d −2)ζ (d −2)
2(d −1)Ωd−1

μ
)2

+O(μ3) , (6.19)

where ζ (p) =∑∞
n=1 n−p is the Riemann zeta function. The corresponding correction

to the thermodynamics can be found e.g.in (3.18) of [3].
The black hole branch has been studied numerically for d = 4 in [46, 48] and for

d = 5 in [47, 48]. For small μ , the impressively accurate data of [48] are consistent
with the analytical results of [31–33]. The results of [48] for d = 5 are displayed in
a (μ ,n) phase diagram in Fig. 6.1.

6.3.3 Phase Diagram and Copied Phases

In Fig. 6.1 the (μ ,n) diagram for d = 5 is displayed, which is one of the cases where
most information is known. We have shown the complete non-uniform branch, as
obtained numerically by Wiseman [38], which emanates at μGL = 2.31 from the
uniform branch that has n = 1/3. These data were first incorporated into the (μ ,n)
diagram in [50]. For the black hole branch we have plotted the numerical data
of Kudoh and Wiseman [48]. It is evident from the figure that this branch has an
approximate linear behavior for a fairly large range of μ close to the origin and the
numerically obtained slope agrees very well with the analytic result (6.19).

6.3.3.1 Merger Point

The figure strongly suggests that the localized black hole branch meets with the
non-uniform black string branch in a topology changing transition point, which is
the scenario earlier suggested by Kol [55] (see [52] for a list of scenarios). For
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this reason, it seems reasonable to expect that the localized black hole branch is
connected with the non-uniform string branch in any dimension. This means that
we can go from the uniform black string branch to the localized black hole branch
through a connected series of static classical geometries. The point in which the two
branches are conjectured to meet is called the merger point.

6.3.3.2 Copied Phases

In [52] it was shown that one can generate new solutions by copying solutions on
the circle several times, following an idea of Horowitz [98]. This works for solutions
which vary along the circle direction (i.e., in the z direction), so it works for both
the black hole branch and the non-uniform string branch. Let k be a positive integer.
Then if we copy a solution k times along the circle we get a new solution with the
following parameters:

μ̃ =
μ

kd−3 , s̃ =
s

kd−2 , t̃ = kt , ñ = n . (6.20)

See [52] for the corresponding expression of the metric of the copies in the
SO(d − 1)-symmetric ansatz. Using the transformation (6.20), one easily sees that
the non-uniform and localized black hole branches depicted in Fig. 6.1 are copied
infinitely many times in the (μ ,n) phase diagrams, and we have depicted the k = 2
copy in this figure.

6.3.3.3 General Dimension

The six-dimensional phase diagram displayed in Fig. 6.1 is believed to be repre-
sentative for the black string/localized black hole phases on M D−1 × S1 for all
5 ≤ D ≤ 13. Here the upper bound follows from the fact that, as mentioned above,
there is a critical dimension D = 13 above which the behavior of the non-uniform
black string phase is qualitatively different [39]. The phase diagram for D ≥ 14 is
much poorly known in comparison, since there are no data like Fig. 6.1 available
for the localized and non-uniform phases, only the asymptotic behaviors. However,
we do know from (6.17) that the non-uniform branch will extend to the left (lower
values of μ) as it emerges from the GL point and on general grounds is expected to
merge again with the localized black hole branch.

6.3.4 KK Phases on TTT
2 from Phases on S1

We show here how one can translate the known results for KK black holes on the
circle (i.e., on M D−2 × S1) to results for KK black holes on the torus (i.e., on
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M D−2 ×T
2). The resulting phases are relevant in connection with the phases of

rotating black holes in asymptotically flat spacetime, as shown in Sect. 6.6.
We recall first the definitions of dimensionless quantities in (6.7). While these

quantities were originally introduced in [11, 50] for black holes on a KK circle
of circumference L, we may similarly use these definitions for KK black holes in
D dimensions with a square torus of side lengths L, to which we restrict in the
following. Likewise, we can use the alternative dimensionless quantities (6.9) for
that case.

6.3.4.1 Map from Circle to Torus Compactification

We first want to establish a map for these dimensionless quantities from KK black
holes on M D−2 × S1 (denoted with hatted quantities) to those for KK black holes
on M D−2 ×T

2 (denoted with unhatted quantities), obtained by adding an extra
compact direction of size L. Suppose we are given an entropy function ŝ(μ̂) for a
phase of KK black holes on M D−2 × S1. Any such phase lifts trivially to a phase
of KK black holes on M D−2 ×T

2 that is uniform in one of the torus directions. We
show below how to obtain the function aH(�) for the latter in terms of ŝ(μ̂) of the
former. In the following we will use the notation D = n+4.

It is not difficult to see that in terms of the original dimensionless quantities (6.7)
we have the simple mapping

μ = μ̂ , s = ŝ , t = t̂ . (6.21)

It then follows from (6.9) and (6.10) that the area function aH(�) of KK black holes
on M D−2 ×T

2 is obtained via the mapping relation

aH(�) = �n+2ŝ(�−n−1) . (6.22)

6.3.4.2 Application to Known Phases

Using now the entropy function ŝuni(μ̂) ∼ μ̂
n

n−1 of the uniform black string in
M n+2 ×S1 we get from (6.22) the result

aubm
H (�) ∼ �−

2
n−1 (6.23)

for the uniform black membrane (ubm) 4 + n dimensions. Furthermore, using that
for small μ (or equivalently large �) the entropy of the localized black hole in
M n+2 ×S1 is ŝloc(μ̂) ∼ μ̂

n+1
n we find via the map (6.22) the result

albs
H (�) ∼ �−

1
n (� → ∞) (6.24)

for the large � limit of the localized black string (lbs) in 4+n dimensions.
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Finally, for the non-uniform string in M n+2 × S1 dimensions we use (6.18) to
obtain

anubm
H (�) = aubm

H (�)

[
1− n2(n+1)

2(n−1)2

γn+2

�n+4
GL

(�− �GL)2 +O

(
(�− �GL)3

)]
(6.25)

for the non-uniform black membrane (nubm). Here, �GL = (μGL,n+2)−
1

n+1 is the
critical GL wavelength in terms of the dimensionless GL mass μGL,d given in (6.16)
and γd the coefficient in (6.17).

6.3.4.3 Copies

As remarked in Sect. 6.3.3 the localized black hole and non-uniform black string
phase on M n+2 × S1 have copied phases with multiple non-uniformity or multiple
localized black objects. From the map (6.20) we then find using (6.21) and the defi-
nitions (6.9) that corresponding copied phases of KK black holes on the torus obey
the transformation rule

�

aH

Fig. 6.2 aH(�) phase diagram in seven dimensions (M 5×T
2) for Kaluza–Klein black hole phases

with one uniform direction. Shown are the uniform black membrane phase (dotted), the non-
uniform black membrane phase (solid) and the localized black string phase (dashed). For the latter
two phases, we have also shown their k = 2 copy. The non-uniform black membrane phase em-
anates from the uniform black membrane phase at the GL point �GL = 0.811, while the k = 2 copy

starts at the 2-copied GL point �
(2)
GL =

√
2�GL = 1.15. This figure is representative of the phase

diagram of phases on M D−2 ×T
2 for all 6 ≤ D ≤ 14. Reprinted from [30]
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�̃ = k
n−1
n+1 � , ãH = k−

2
n+1 aH , t̃H = ktH . (6.26)

6.3.4.4 Seven-Dimensional Phase Diagram

As an explicit example, we give the mapping that can be used to convert the known
results for KK black holes on M 5 ×S1 to KK black holes on M 5 ×T

2:

(�,aH) = (μ̂−1/4, μ̂−5/4ŝ) . (6.27)

This can be used to convert plots of points (μ̂, ŝ) (see, e.g., [3]) for six-dimensional
KK black holes on a circle to the phase diagram in Fig. 6.2 for seven-dimensional
KK black holes (with one uniform direction) on a torus. It includes the uniform
black membrane, the black membrane with one uniform and one non-uniform di-
rection, and the black string localized in one of the circles of T

2. The figure also
includes the k = 2 copies obtained from these data and the map (6.26). Both the uni-
form black membrane phase and the localized black string phase extend to � → ∞
where they obey the behavior (6.23) and (6.24), respectively, with n = 3.

6.4 Multi-black Hole Configurations on the Cylinder

We now turn to the construction of multi-black hole configurations on the cylinder,
recently obtained in [35]. In Sect. 6.3.3 we already encountered a special subset of
these, namely the copied phases of the localized black hole branch, corresponding
to multi-black hole configurations in which all black holes have the same mass.
Here, we describe the main points of the construction of more general multi-black
hole configurations [35] using matched asymptotic expansion. We also show how
the thermodynamics of these configurations can be understood from a Newtonian
point of view. Finally we comment on the consequences of these configurations for
the phase diagram of KK black holes.

6.4.1 Construction of Multi-black Hole Solutions

The copies of the single-black hole localized on the circle correspond to a multi-black
hole configurations of equal mass black holes that are spread with equal distance
from each other on the circle. Beyond these, there exist more general multi-black
hole configurations which have recently been considered in [35]. These solutions
correspond to having several localized black holes of different sizes located at dif-
ferent points along the circle direction of the cylinder Rd−1 × S1. The location of
each black hole is such that the total force on each of them is zero, ensuring that
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they are in equilibrium. It is moreover necessary for being in equilibrium that the
black holes are all located in the same point in the Rd−1 part of the cylinder.

The metric constructed in [35] are solutions to the Einstein equations to first
order in the mass. More precisely, they are valid in a regime where the gravitational
interaction between any one of the black holes and the others (and their images on
the circle) is small. The solutions in [35] thus describe the small mass limit of these
multi-black hole configurations on the cylinder, or equivalently they can be said
to describe the situation where the black holes are far apart. The method used for
solving the Einstein equations is the one of matched asymptotic expansion [31–35].
The particular construction follows the approach of [31] where it was used to find
the metric of a small black hole on the cylinder based on an ansatz for the metric
found in [43].

6.4.1.1 General Idea and Starting Point

We describe here the general idea behind constructing the new solutions for multi-
black hole configurations on the d-dimensional cylinder Rd−1 × S1. The configu-
ration under consideration is that of k black holes placed at different locations z∗i ,
i = 1, . . . ,k, in the same point of the Rd−1 part of the cylinder. We write M as the
total mass of all of the black holes and define νi as the fraction of mass of the ith
black hole, i.e.,

Mi = νiM ,
k

∑
i=1

νi = 1 , (6.28)

where Mi is the mass of the ith black hole. Note that 0 < νi ≤ 1.
The matched asymptotic expansion is suitable when there are two widely sepa-

rated scales in the problem. Here they are the size (mass) of each of the black holes
(all of which are taken of the same order) and the length of the circle direction. In
particular, we assume that all black holes have a horizon radius (of the same order)
which is small compared to the length of the circle.

The construction of the solution then proceeds in the following steps4:

– Step 1: Find a metric corresponding to the Newtonian gravitational potential
sourced by a configuration of small black holes on the cylinder. This metric is
valid in the region R � R0.

– Step 2: Consider the Newtonian solution close to the sources, i.e., in the overlap
region R0 � R � L.

– Step 3: Find a general solution near a given event horizon and match this solution
to the metric in the overlap region found in step 2. The resulting solution is valid
in the region R0 ≤ R � L.

4 Here we use the coordinate R which is part of the two-dimensional coordinate system (R,v)
introduced in [43] that interpolates between cylindrical coordinates (r,z) and spherical coordinates
(ρ,θ). In terms of F(r,z) in (6.31) we have R(r,z) ∝ F(r,z)−1/(d−3). Note that [31, 35, 43] set
L = 2π , which we choose not to do here for pedagogical clarity.
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With all these three steps implemented, we have a complete solution for all of
the spacetime outside the event horizon. We refer to [35] for further details, in-
cluding the explicit form of the first-order corrected metric and thermodynam-
ics of the resulting multi-black hole configurations, but present some of the easy
steps here.

6.4.1.2 Newtonian Potential

Following the discussion in Sect. 6.3.1 for static solutions on the cylinder the two
relevant components of the stress tensor are Ttt and Tzz. These components source
the two gravitational potentials [50]

∇2Φ = 8πG
d −2
d −1

Ttt , ∇2B =
8πG
d −1

Tzz , (6.29)

where G is the (d + 1)-dimensional Newton constant. In the limit of small total
mass, we have B/(GM) → 0 for M → 0 which means [31, 35] that we can neglect
the binding energy potential B as compared to the mass density potential Φ . One
thus only needs to consider the potential Φ , i.e., Newtonian gravity.

For the multi-black hole configuration described above, it is not difficult to find
the solution for Φ using the method of images in terms of (r,z) coordinates of the
cylinder. One finds

Φ(r,z) = − 8πGM
(d −1)Ωd−1

F(r,z) , (6.30)

with

F(r,z) =
k

∑
i=1

∞

∑
m=−∞

νi

[r2 +(z− z∗i −Lm)2]
d−2

2

, (6.31)

so that the potential (6.30) describes the Newtonian gravitational potential sourced
by the multi-black hole configuration.

One can now study how the potential Φ looks when going near the sources. To
achieve this it is useful to define for the ith black hole the spherical coordinates ρ
and θ by

r = ρ sinθ , z− z∗i = ρ cosθ , (6.32)

where θ is defined in the interval [0,π]. In terms of these coordinates one finds that
F(r,z) in (6.31) can be expanded as

F(ρ,θ) = νiρ−(d−2) +Λ (i) +Λ (i)
1 cosθ ρ+O

(
ρ2) , (6.33)
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for ρ � 1, where

Λ (i) =
1

Ld−2

(
νi 2ζ (d −2)

+
k

∑
j=1
j �=i

ν j

[
z̃−(d−2)

i j +ζ (d −2,1− z̃i j)+ζ (d −2,1+ z̃i j)
])

. (6.34)

Here ζ (s,1 + a) = ∑∞
m=1(m + a)−s is the generalized Riemann zeta function and

z̃i j ≡ zi j/L labels the distance in the z direction between the jth and ith black hole
(see (2.24) of [35] for precise definitions).

Using now (6.33) with (6.30) one obtains the behavior of the Newtonian potential
Φ near the ith black hole. This shows that the first term in (6.33) corresponds to the
flat space gravitational potential due to the ith mass Mi = νiM and the second term
is a constant potential due to its images and the presence of the other masses and
their images. The quantityΛ (i) plays a crucial role in the explicit construction of the
first-order corrected metric of multi-black hole configurations on the cylinder and
also enters the first-order corrected thermodynamics (see Sect. 6.4.2).

6.4.1.3 Equilibrium Conditions

The third term in (6.33) is proportional to ρ cosθ = z− z∗i and therefore this term

gives a non-zero constant term in ∂zΦ ifΛ (i)
1 is non-zero. This therefore corresponds

to the external force on the ith black hole, due to the other k−1 black holes. Indeed,
Λ (i)

1 can be written as a sum of the potential gradients corresponding to the gravita-
tional force due to each of the k−1 other black holes on the ith black hole as

Λ (i)
1 =

k

∑
j=1, j �=i

ν jVi j , (6.35)

where Vi j corresponds to the gravitational field on the ith black hole from the jth
black hole, given by

Vi j =
(d −2)
Ld−1

{
z̃−(d−1)

i j −ζ (d −1,1− z̃i j)+ζ (d −1,1+ z̃i j)
}

, (6.36)

for j �= i. Defining Fi j ≡ νiν jVi j as the Newtonian force on the ith mass due to the
jth mass (and its images as seen in the covering space of the circle), the condition

Λ (i)
1 = 0 can be written as the condition of zero external force on each of the k

masses
k

∑
j=1, j �=i

Fi j = 0 , (6.37)

for i = 1, ...,k. As a check, note that it is not difficult to verify that Newton’s law
Fi j = −Fji is verified using an appropriate identity for the generalized zeta function
(see (3.6) of [35]).
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We thus conclude that for static solutions one needs to require the equilibrium

conditionΛ (i)
1 = 0 for all i, since otherwise the ith black hole would accelerate along

the z axis. This gives conditions on the relation between the positions z∗i and the mass
ratios νi, which are examined in detail in [35]. It is shown how to build such equi-
librium configurations and a general copying mechanism is described that builds
new equilibrium configurations by copying any given equilibrium configuration a
number of times around the cylinder.

Note that this equilibrium is an unstable equilibrium, i.e., generic small distur-
bances in the position of one of the black holes will disturb the balance of the con-
figuration and result in the merger of all of the black holes into a single black hole.
As also argued in [35], it is expected that these equilibrium conditions are a conse-
quence of regularity of the solution since with a non-zero Newtonian force present
on the black hole the only way to keep it static is to introduce a counter-balancing
force supported by a singularity. It turns out that the irregularity of the solution can-
not be seen at the leading order since the binding energy, which accounts for the
self-interaction of the solution, is neglected. It is therefore expected that singulari-
ties will appear at the second order in the total mass for solutions that do not obey
the equilibrium condition mentioned above.

6.4.2 Newtonian Derivation of the Thermodynamics

It turns out that there is a quick route to determine the first-order corrected thermo-
dynamics of the multi-black hole configurations, as explained in [35] following the
method first found in [34]. Here one assumes the equilibrium condition (6.37) to be
satisfied and all one needs is the quantity Λ (i) defined in (6.34), i.e., one does not
need to compute the first-order corrected metric.

To start, we define for each black hole an ‘areal’ radius ρ̂0(i), i = 1, . . . ,k,
such that the individual mass, entropy and temperature of each black hole are
given by

M0(i) =
(d −1)Ωd−1

16πG
ρ̂d−2

0(i) , S0(i) =
Ωd−1ρ̂d−1

0(i)

4G
, T0(i) =

d −2
4πρ̂0(i)

. (6.38)

These are the intrinsic thermodynamic quantities associated to each black hole
when they would be isolated in flat empty (d +1)-dimensional space.

If we now imagine placing the black holes on a circle at locations z∗i each of
them will experience a gravitational potential Φi. In particular, this is the Newtonian
potential created by all images of the ith black hole as well as all other k−1 masses
(and their images) as seen from the location of the ith black hole. It is not difficult
to show that Φi is given by

Φi = −Λ
(i)

2νi
ρ̂d−2

0(i) , (6.39)
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in terms ofΛ (i) defined in (6.34). Taking into account this potential, we can now de-
termine the thermodynamic quantities of the interacting system to leading order. By
definition, the entropy Si = S0(i) is unchanged. The temperature of each black hole,
however, receives a redshift contribution coming from the gravitational potentialΦi,
so that

Ti = T0(i)(1+Φi) . (6.40)

The total mass of the configuration is equal to the sum of the individual masses
when the black holes would be isolated plus the negative gravitational (Newtonian)
potential energy that appears as a consequence of the black holes and their images.
We thus have that the total mass is given by

M = M0 +UNewton , (6.41)

where

M0 ≡
k

∑
i=1

M0(i) , UNewton ≡
1
2

k

∑
i=1

M0(i)Φi . (6.42)

From these Newtonian results one can then derive the formula for the relative
tension simply by using the (generalized) first law of thermodynamics (see (6.6)):

δM =
k

∑
i=1

TiδSi +
nM
L
δL , (6.43)

from which one finds that

n =
L
M

(
∂M
∂L

)
Si

. (6.44)

The condition of keeping Si fixed means that we should keep fixed the mass M0(i)
of each black hole, and hence also the total intrinsic mass M0. It thus follows from
(6.44) and (6.41) that

n =
L

M0

(
∂UNewton

∂L

)
M0(i)

= − 1
4M0

k

∑
i=1

M0(i)

ρ̂d−2
0(i)

νi
L
∂Λ (i)

∂L
=

d −2
4

k

∑
i=1

Λ (i)ρ̂d−2
0(i) ,

(6.45)

where we used Λ (i) ∝ L−(d−2) for fixed locations z∗i (see (6.34)) and M0(i) = νiM0.
As shown in [35], the thermodynamics above agrees with the explicitly computed
thermodynamic quantities from the first-order corrected metric.

We emphasize that these results are correct only to first order in the mass and
note that in terms of the reduced mass (6.7) the expression (6.45) gives that n as a
function of μ is given for the multi-black hole configurations by

n(μ) =
(d −2)(2π)d−2

4(d −1)Ωd−1

k

∑
i=1

νiΛ (i)μ+O(μ2) , (6.46)

which generalizes the single-black hole result given in (6.17). In terms of the phase
diagram in Fig. 6.1, it follows from this result that (at least for small masses) the
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k black hole configurations correspond to points lying above the single-black hole
phase and below the k-copied phase.

From the first-order corrected temperatures (6.40) one can show that the
multi-black hole configurations are in general not in thermal equilibrium. The only
configurations that are in thermal equilibrium to this order are the copies of the
single-black hole solution studied previously [31, 52, 98]. As a further comment
we note that Hawking radiation will seed the mechanical instabilities of the multi-
black hole configurations. The reason for this is that in a generic configuration the
black holes have different rates of energy loss and hence the mass ratios required
for mechanical equilibrium are not maintained. This happens even in special con-
figurations, e.g., when the temperatures are equal, because the thermal radiation is
only statistically uniform. Hence asymmetries in the real-time emission process will
introduce disturbances driving these special configurations away from their equilib-
rium positions.

6.4.3 Consequences for the Phase Diagram

The existence of the multi-black hole solutions has striking consequences for the
phase structure of black hole solutions on M d × S1. It means that one can, for
example, start from a solution with two equal size black holes, placed oppositely
to each other on the cylinder, and then continuously deform the solution to be
arbitrarily close to a solution with only one black hole (the other black hole be-
ing arbitrarily small in comparison). Thus, we get a continuous span of classical
static solutions for a given total mass. In particular, a multi-black hole configuration
with k black holes has k independent parameters. This implies a continuous non-
uniqueness in the (μ ,n) phase diagram (or for a given mass), much like the one
observed for bubble-black hole sequences [49] and for other classes of black hole
solutions [17–19, 99] (see also Sect. 6.6). In particular, this has the consequence that
if we would live on M 4×S1 then from a four-dimensional point of view one would
have an infinite non-uniqueness for static black holes of size similar to the size of
the extra dimension, thus severely breaking the uniqueness of the Schwarzschild
black hole.

6.4.3.1 New Non-uniform Strings?

Another consequence of the new multi-black hole configurations is for the connec-
tion to uniform and non-uniform strings on the cylinder. As discussed in Sect. 6.3.3,
there is evidence that the black hole on the cylinder phase merges with the non-
uniform black string phase in a topology changing transition point. It follows from
this that the copies of black hole on the cylinder solution merge with the copies of
non-uniform black strings. However, due to the multi-black hole configurations we
now have a continuous span of solutions connected to the copies of the black hole
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on the cylinder. Therefore, it is natural to ask whether the new solutions also merge
with non-uniform black string solutions in a topology changing transition point. If
so, it probes the question whether there exist, in addition to having new black holes
on the cylinder solutions, also new non-uniform black string solutions. Thus, these
new solutions present a challenge for the current understanding of the phase dia-
gram for black holes and strings on the cylinder. For a detailed discussion on this,
see [35].

Another connection with strings and black holes on the cylinder is that a Gregory–
Laflamme unstable uniform black string is believed to decay to a black hole on the
cylinder (when the number of dimensions is less than the critical one [39]). However,
the new multi-black hole solutions mean that one can imagine them as intermediate
steps in the decay.

6.4.3.2 Lumpy Black Holes

Reference [35] also examines in detail configurations with two and three black
holes. For two black holes this confirms the expectation that one maximizes the
entropy by transferring all the mass to one of the black holes, and also that if the
two black holes are not in mechanical equilibrium then the entropy is increasing
as the black holes become closer to each other. These two facts are both in ac-
cordance with the general argument that the multi-black hole configurations are
in an unstable equilibrium and generic perturbations of one of the positions will
result in that all the black holes merge together in to a single black hole on the
cylinder.

A detailed examination of the three black hole solutions suggests the possibility
of further new types of black hole solutions in Kaluza–Klein spacetimes. In partic-
ular, this analysis suggests the possibility that new static configurations may exist
that consist of a lumpy black hole, where the non-uniformities are supported by the
gravitational stresses imposed by an external field. These new solutions were argued
by considering a symmetric configuration of three black holes, with one of mass M1

and two others of equal mass M2 = M3 at equal distance to the first one. Increasing
the total mass of the system shows that it is possible that the two black holes (2
and 3) merge before merging with black hole 1. In this way one could end up with
a static solution consisting of lumpy black hole (i.e., a ‘peanut-like’-shaped black
object) together with an ellipsoidal black hole.

6.4.3.3 Analogue Fluid Model

Finally we note that one may consider the multi-black hole configurations in relation
to an analogue fluid model for the Gregory–Laflamme (GL) instability, recently pro-
posed in [90]. There it was pointed out that the GL instability of a black string has
a natural analogue description in terms of the Rayleigh–Plateau (RP) instability of a
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fluid cylinder. It turns out that many known properties of the gravitational instabil-
ity have an analogous manifestation in the fluid model. These include the behavior
of the threshold mode with d, dispersion relations, the existence of critical dimen-
sions and the initial stages of the time evolution (see [90, 91, 100] for details). In
the context of this analogue fluid model, [35] discusses a possible, but more specu-
lative, relation of the multi-black hole configurations to configurations observed in
the time evolution of fluid cylinders.

6.5 Thin Black Rings in Higher Dimensions

In this and the next section we turn our attention to rotating black holes. We start
by reviewing the recent construction [30] of an approximate solution for an asymp-
totically flat neutral thin rotating black ring in any dimension D ≥ 5 with horizon
topology SD−3 × S1. As in Sect. 6.4, this construction uses the method of matched
asymptotic expansion, and we only present the main points. We discuss in particu-
lar the equilibrium condition necessary for balancing the ring and how this enables
to obtain the leading-order thermodynamics of thin rotating black rings. We also
compare the thermodynamics of the thin black ring to that of the MP black hole. In
this and the following section we denote the number of spacetime dimensions by
D = 4+n.

6.5.1 Thin Black Rings from Boosted Black Strings

Black rings in (n + 4)-dimensional asymptotically flat spacetime are solutions of
Einstein gravity with an event horizon of topology S1×Sn+1. As we briefly reviewed
in Sects. 6.1 and 6.2 explicit solutions with this topology in five dimensions (n = 1)
were first presented in [16] (see also [2] for a review).

In five dimensions, there is beyond the MP black hole and the black ring one
more phase of rotating black holes if one restricts to phases with a single angular
momentum that are in thermal equilibrium. This is the black Saturn phase consist-
ing of a central MP black and one black ring around it, having equal temperature
and angular velocity. If one abandons the condition of thermal equilibrium there are
many more black Saturn phases with multiple rings as well as multi-black ring so-
lutions. We refer to [18] and the recent review [4] for details on the more general
phase structure for the five-dimensional case.

The construction of analogous solutions in more than five dimensions is con-
siderably more involved, since for D ≥ 6 these solutions are not contained in the
generalized Weyl ansatz [24, 25, 101] because they do not have D− 2 commuting
Killing symmetries. Furthermore the inverse scattering techniques of [26–29] do not
extend to the asymptotically flat case in any D ≥ 6.
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Therefore, one way to make progress toward solving this problem can be achieved
by first constructing thin black ring solutions in arbitrary dimensions as a perturba-
tive expansion around circular boosted black strings. The idea that rotating thin
black rings should be well approximated by boosted black strings is intuitively clear
and already appears in earlier works [102–104]. This was used as a starting point in
the explicit construction [30].

6.5.1.1 Boosted Black String

The zeroth-order solution is that of a straight boosted black string. The metric of
this can easily be obtained from (6.11) by applying a boost in the (t,z) plane. The
result is

ds2 = −
(

1− cosh2α
rn

0

rn

)
dt2 −2

rn
0

rn coshα sinhα dtdz+
(

1+ sinh2α
rn

0

rn

)
dz2

+
(

1− rn
0

rn

)−1

dr2 + r2dΩ 2
n+1 , (6.47)

where r0 is the horizon radius and α is the boost parameter. In general, we will
take the z direction to be along an S1 with circumference 2πR, which means we can
write z in terms of an angular coordinate ψ defined by ψ = z/R (0 ≤ ψ < 2π). At
distances r � R, the solution (6.47) is the approximate metric of a thin black ring to
zeroth order in 1/R.

By definition, a thin black ring has an S1 radius R that is much larger than its
Sn+1 radius r0. In this limit, the mass of the black ring is small and the gravita-
tional attraction between diametrically opposite points of the ring is very weak. So,
in regions away from the black ring, the linearized approximation to gravity will
be valid, and the metric will be well approximated if we substitute the ring by an
appropriate delta-like distributional source of energy–momentum. The source has
to be chosen so that the metric it produces is the same as that expected from the
full exact solution in the region far away from the ring. Since the thin black ring is
expected to approach locally the solution for a boosted black string, it is sensible
to choose distributional sources that reproduce the metric (6.47) in the weak-field
regime:

Ttt =
rn

0

16πG

(
ncosh2α+1

)
δ (n+2)(r) , (6.48a)

Ttz =
rn

0

16πG
ncoshα sinhα δ (n+2)(r) , (6.48b)

Tzz =
rn

0

16πG

(
nsinh2α−1

)
δ (n+2)(r) . (6.48c)
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The location r = 0 corresponds to a circle of radius R in the (n+3)-dimensional
Euclidean flat space, parameterized by the angular coordinateψ . In this construction
the mass and angular momentum of the black ring are obtained by integrating the
energy and momentum densities:

M = 2πR
∫

Sn+1
Ttt , J = 2πR2

∫
Sn+1

Ttz , (6.49)

where Sn+1 links the ring once.

6.5.1.2 Dynamical Equilibrium Condition

We now first show that the boost parameter α gets fixed by a dynamical equilib-
rium condition ensuring that the string tension is balanced against the centrifu-
gal repulsion. To this end note that we are approximating the black ring by a
distributional source of energy–momentum. The general form of the equation of
motion for probe brane-like objects in the absence of external forces takes the
form [105]

Kμν
ρT μν = 0 , (6.50)

where the indices μ ,ν are tangent to the brane and ρ is transverse to it. The second
fundamental tensor Kμν

ρ extends the notion of extrinsic curvature to submanifolds
of codimension possibly larger than one. The extrinsic curvature of the circle is
1/R, so a circular linear distribution of energy–momentum of radius R will be in
equilibrium only if

Tzz

R
= 0 , (6.51)

i.e., for finite radius the pressure tangential to the circle must vanish. Hence, for
the thin black ring with source (6.48), the condition that the ring be in equilibrium
translates into a very specific value for the boost parameter

sinh2α =
1
n

, (6.52)

which we will also refer to as the critical boost. For D = 5 (n = 1) this was already
observed in [102] where the thin black string limit of five-dimensional black rings
was first made explicit, but the connection with (6.50) was first noticed in [30].

6.5.1.3 Thermodynamics

Using (6.52) it is not difficult to obtain the physical quantities of the critically
boosted black string, and hence the leading-order thermodynamics of thin black
rings (see also [103, 106] for further details on boosted black strings and their ther-
modynamics). We find for the mass M, entropy S, temperature T , angular momen-
tum J and angular velocity Ω the expressions [30]
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M =
Ωn+1

8G
Rrn

0(n+2) , S =
πΩn+1

2G
Rrn+1

0

√
n+1

n
, T =

n
4π

√
n

n+1
1
r0

, (6.53a)

J =
Ωn+1

8G
R2 rn

0

√
n+1 , Ω =

1√
n+1

1
R

. (6.53b)

We also note that an equivalent but more physical form of the equilibrium equa-
tion (6.52) in terms of these quantities is

R =
n+2√
n+1

J
M

. (6.54)

We thus see that the radius grows linearly with J for fixed mass.
It is remarkable that with the above reasoning one can already obtain the correct

limiting thermodynamics of thin black rings to leading order, without having to
solve for any metric. One finds from (6.53) that the entropy of thin black rings
behaves as

Sring(M,J) ∝ J
− 1

D−4 M
− D−2

D−4 , (6.55)

whereas that of ultra-spinning MP black holes in D ≥ 6 is given by [36]

Shole(M,J) ∝ J
− 2

D−5 M
− D−2

D−5 . (6.56)

This already shows the non-trivial fact that in the ultra-spinning regime of large
J for fixed mass M the rotating black ring has higher entropy than the MP black
hole (see also Sect. 6.5.3). Moreover, as explained in Sect. 6.5.2, it turns out that
for D ≥ 6 the results (6.53) are actually valid up to and including the next order
in r0/R, so receives only O(r2

0/R2) corrections. This conclusion could already be
drawn once one has convinced oneself that the first-order 1/R correction terms in
the metric only involve dipole contributions which can easily be argued to give zero
contribution to all thermodynamic quantities [30].

It is important to stress that the above reasoning relies crucially on the as-
sumption that when the boosted black string is curved, the horizon remains regu-
lar. To verify this point, and also to obtain a metric for the thin black ring, [30]
solves the Einstein equations explicitly by constructing an approximate solution
for r0 � R using a matched asymptotic expansion. In this analysis one finds that
the condition (6.51) appears as a consequence of demanding absence of singular-
ities on the plane of the ring outside the horizon. Whenever nsinh2α �= 1 with
finite R, the geometry backreacts creating singularities on the plane of the ring.
These singularities admit a natural interpretation. Since (6.50) is a consequence
of the conservation of the energy–momentum tensor, when (6.51) is not satisfied
there must be additional sources of energy–momentum. These additional sources
are responsible for the singularities in the geometry. Alternatively, the derivation
of (6.51) in [30] from the Einstein equations is an example of how general relativ-
ity encodes the equations of motion of black holes as regularity conditions on the
geometry.
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6.5.2 Matched Asymptotic Expansion

We now review the highlights of the perturbative construction of thin black rings
using matched asymptotic expansion (see also Sect. 6.4.1). In the problem at hand,
the two widely separated scales are the ‘thickness’ of the ring r0 and the radius
of the ring R, and the thin limit means that r0 � R. There are therefore two
zones, an asymptotic zone at large distances from the black ring, r � r0, where
the field can be expanded in powers of r0. The other zone is the near-horizon
zone which lies at scales much smaller than the ring radius, r � R. In this zone
the field is expanded in powers of 1/R. At each step, the solution in one of the
zones is used to provide boundary conditions for the field in the other zone, by
matching the fields in the ‘overlap’ zone r0 � r � R where both expansions are
valid.

As already discussed in Sect. 6.5.1, the starting point is to consider the solution
in the near-horizon zone to zeroth order in 1/R, i.e., we take a boosted black string
of infinite length, R → ∞. The next steps in the construction are then as follows:

– Step 1: One solves the Einstein equations in the linearized approximation around
flat space for a source corresponding to a circular distribution of a given mass and
momentum density as given in (6.48). This metric is valid in the region r � r0.

– Step 2: We consider the Newtonian solution close to the sources, i.e., in the over-
lap region r0 � r � R.

– Step 3: We consider the near-horizon region of the ring and find the linear cor-
rections to the metric of a boosted black string for a perturbation that is small in
1/R; in other words, we analyze the geometry of a boosted black string that is
now slightly curved into a circular shape. This solution is then matched to the
metric in the overlap region found in step 2. The resulting solution is valid in the
region r0 ≤ r � L.

To solve step 1 for a non-zero Tψψ = R2 Tzz is not easy. It is therefore convenient
to already assume that the equilibrium condition Tψψ = 0 in (6.51) is satisfied. This
then gives the solution of a black ring in linearized gravity [30]. Finding a more
general solution with a source for the tension is much easier if one restricts to the
overlap zone (step 2). In this regime we are studying the effects of locally curving
a thin black string into an arc of constant curvature radius R. To this end it is con-
venient to introduce ring-adapted coordinates. These are derived in [30] and to first
order in 1/R the flat space metric in these coordinates takes the form

ds2(En+3) =
(

1+
2r cosθ

R

)
dz2 +

(
1− 2

n
r cosθ

R

)(
dr2 + r2dθ 2 + r2 sin2 θdΩ 2

n

)
.

(6.57)

In terms of these coordinates the general form of the metric in the overlap region
is then

gμν � ημν +
rn

0

rn

(
h(0)
μν(r)+

r cosθ
R

h(1)
μν(r)

)
. (6.58)
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Solving Einstein equations to order 1/R then explicitly shows that regularity of
the solution enforces vanishing of the tension Tzz (see (6.51)).

The technically most difficult part of the problem is to find the near-horizon
solution in step 3. Physically, this corresponds to curving the black string into a
circle of large but finite radius R. In effect, this means that we are placing the black
string in an external potential whose form at large distances is that of (6.58) and
which changes the metric gbbs

μν in (6.47) of the (critically) boosted black string by a
small amount, i.e.,

gμν � gbbs
μν (r;r0)+

cosθ
R

hμν(r;r0) . (6.59)

In [30] the Einstein equations to order 1/R are explicitly solved, showing that the
perturbations hμν(r;r0) can be expressed in terms of hypergeometric functions.

6.5.2.1 Corrected Thermodynamics

One can find the corrections to the thermodynamics as follows. First, one uses the
near-horizon corrected metric (6.59) to find the corrections to the entropy S, tem-
perature T and angular velocity Ω . Then one can use the first law,

dM = TδS +ΩδJ , (6.60)

and the Smarr formula

(n+1)M = (n+2)(T S +ΩJ) , (6.61)

to deduce the corrections to the mass and angular momentum.5 Using now that the
perturbations in (6.59) are only of dipole type, with no monopole terms, it follows
that the area, surface gravity and angular velocity receive no modifications in 1/R.
The reason is that a dipole cannot change the total area of the horizon, only its
shape. This is true of both the shape of the Sn+1 and the length of the S1, which can
vary with θ but on average (i.e., when integrated over the horizon) remain constant.
So S is not corrected. The surface gravity and angular velocity cannot be corrected
either. They must remain uniform on a regular horizon, so, since the dipole terms
vanish at θ = π/2, no corrections to T and Ω are possible. It then follows from
(6.60) and (6.61) that M and J are not corrected either.6 So the function S(M,J)
obtained in (6.55) is indeed valid including the first order in 1/R. It is interesting
to observe that this conclusion could be drawn already when the asymptotic form
of the metric (6.58) in the overlap zone, is seen to include only dipole terms at
order 1/R.

5 This method was also used in [31, 35] for small black holes and multi-black holes on the cylinder.
6 In five dimensions (n = 1) there are corrections to this order. Their origin is discussed in Ap-
pendix A of [30].
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6.5.3 Black Rings Versus MP Black Holes

We now proceed by analyzing the thin black ring thermodynamics and compare
it to that of ultra-spinning MP black holes. Recall that the thermodynamics of the
thin black ring in the ultra-spinning regime is given by (6.53), which is valid up to
O(r2

0/R2) corrections.

6.5.3.1 Myers–Perry Black Hole

For the MP black hole, exact results can be obtained for all values of the rotation.
The two independent parameters specifying the (single angular momentum) solution
are the mass parameter μ and the rotation parameter a, from which the horizon
radius r0 is found as the largest (real) root of the equation

μ = (r2
0 +a2)rn−1

0 . (6.62)

In terms of these parameters the thermodynamics take the form [15]

M =
(n+2)Ωn+2 μ

16πG
, S =

Ωn+2 r0 μ
4G

, T =
1

4π

(
2rn

0

μ
+

n−1
r0

)
, (6.63a)

J =
Ωn+2 aμ

8πG
, Ω =

arn−1
0

μ
. (6.63b)

Note the similarity between a = n+2
2

J
M and the black ring relation (6.54).

An important simplification occurs in the ultra-spinning regime of J → ∞ with
fixed M, which corresponds to a → ∞. Then (6.62) becomes μ → a2rn−1

0 leading to
simple expressions for (6.63) in terms of r0 and a, which in this regime play roles
analogous to those of r0 and R for the black ring. Specifically, a is a measure of the
size of the horizon along the rotation plane and r0 a measure of the size transverse
to this plane [36]. In fact, in this limit

M → (n+2)Ωn+2

16πG
a2rn−1

0 , S → Ωn+2

4G
a2rn

0 , T → n−1
4πr0

(6.64)

take the same form as the expressions characterizing a black membrane extended
along an area ∼ a2 with horizon radius r0. This identification lies at the core of the
ideas in [36], which were further developed in [30] and summarized in Sect. 6.6.
We note that the quantities J and Ω disappear since the black membrane limit is
approached in the region near the axis of rotation of the horizon and so the mem-
brane is static in the limit. Note furthermore that (6.64) is valid up to O(r2

0/a2)
corrections.

Finally, we remark that the transition to the membrane-like regime is signaled
by a qualitative change in the thermodynamics of the MP black holes. At
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a/r0 =
√

( n+1
n−1 ) the temperature reaches a minimum and

(
∂ 2S/∂J2

)
M changes sign.

For a/r0 smaller than this value, the thermodynamic quantities of the MP black
holes such as T and S behave similarly to those of the Kerr solution and one should
not expect any membrane-like behavior. However, past this point they rapidly ap-
proach the membrane results. We do not expect that the onset of thermodynamic
instability at this point is directly associated to any dynamical instability. Rather,
one expects a GL-like instability to happen at a larger value of a/r0 [30, 36].

6.5.3.2 Dimensionless Quantities

Contrary to the case of KK black holes where we could use the circle length to
define dimensionless quantities (cf. (6.7) or (6.8)) in this case we need to use one
of the physical parameters of the solutions to define dimensionless quantities. We
choose the mass M and thus introduce dimensionless quantities for the spin j, the
area aH , the angular velocity ωH and the temperature tH via

jn+1 ∝
Jn+1

GMn+2 , an+1
H ∝

Sn+1

(GM)n+2 , (6.65a)

ωH ∝Ω(GM)
1

n+1 , tH ∝ (GM)
1

n+1 T , (6.65b)

where convenient normalization factors can be found in (7.9) of [30]. We take j as
our control parameter and now study and compare the functions aH( j), ωH( j) and
tH( j) for black rings and MP black holes in the ultra-spinning regime. These asymp-
totic phase curves can now be obtained using (6.65) together with (6.53) and (6.64),
respectively. In the following we denote the results for the thin black ring with (r)

and for the ultra-spinning MP black holes with (h), and generally omit numerical
prefactors.

6.5.3.3 Comparison of the Thermodynamics

Starting with the reduced area function we see that

a(r)
H ∼ 1

j1/n
, a(h)

H ∼ 1

j2/(n−1) , (6.66)

and so, for any D = 4 + n ≥ 6, the area decreases faster for MP black holes than
for black rings, so we immediately see that black rings dominate entropically in the
ultra-spinning regime [30]. For illustration, Fig. 6.3 shows these curves in D = 7
(n = 3).

Including prefactors one finds for the angular velocities that

ω(r)
H → 1

2 j
, ω(h)

H → 1
j

. (6.67)
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Fig. 6.3 Area versus spin for fixed mass, aH( j), in seven dimensions. For large j, the thin curve
is the result for thin black rings and is extrapolated here down to j ∼ O(1). The thick curve is
the exact result for the MP black hole. The gray line corresponds to the conjectured phase of
pinched black holes (see Sect. 6.6), which branch off tangentially from the MP curve at a value
jGL > jmem. At any given dimension, the phases should not necessarily display the swallowtail as
shown in this diagram, but could also connect more smoothly via a pinched black hole phase that
starts tangentially in jGL and has increasing j. Reprinted from [30]

The ratio ω(h)
H /ω(r)

H = 2, which holds for all D ≥ 6, is reminiscent of the factor
of 2 in Newtonian mechanics between the moment of inertia of a wheel (i.e., a ring)
and a disk (i.e., a pancake) of the same mass and radius, which implies that the disk
must rotate twice as fast as the wheel in order to have the same angular momentum.

Irrespective of whether this is an exact analogy or not, the fact that ω(r)
H < ω(h)

H is
clearly expected from this sort of picture. For the temperatures we find

t
(r)
H ∼ j1/n , t

(h)
H ∼ j2/(n−1) , (6.68)

so the thin black ring is colder than the MP black hole. In fact, since the temperature
is inversely proportional to the thickness of the object the picture suggested above
leads to the following argument: if we put a given mass in the shape of a wheel of
given radius, then we get a thicker object than if we put it in the shape of a pancake
of the same radius.
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6.6 Completing the Phase Diagram

In this section we will discuss the phase structure of asympotically flat neutral ro-
tating black holes in six and higher dimensions by exploiting a connection between,
on one side, black holes and black branes in KK spacetimes and, on the other
side, higher-dimensional rotating black holes. Building on the basic idea in [36],
this phase structure was recently proposed in [30]. Part of this picture is conjec-
tural, but is based on well-motivated analogies and appears to be natural from many
points.

The curve aH( j) at values of j outside the domain of validity of the computa-
tions in Sect. 6.5 corresponds to the regime where the gravitational self-attraction
of the ring is important. There are no analytical methods presently known to treat
such values j ∼ O(1), and the precise form of the curve in this regime may require
numerical solutions. However, as argued in [30] it is possible to complete the black
ring curve and other features of the phase diagram, at least qualitatively. This is
done by combining a number of observations and reasonable conjectures about the
behavior of MP black holes at large rotation and using as input the presently known
phase structure of Kaluza–Klein black holes (see Sect. 6.3).

6.6.1 GL Instability of Ultra-spinning MP Black Hole

In the ultra-spinning regime in D ≥ 6, MP black holes approach the geometry of
a black membrane ≈ R2 × SD−4 spread out along the plane of rotation [36]. In
Sect. 6.5.3 we have already observed that the extent of the black hole along the
plane is approximately given by the rotation parameter a, while the ‘thickness’ of
the membrane, i.e., the size of its SD−4, is given by the parameter r0. For a/r0 larger
than a critical value of order one we expect that the dynamics of these black holes
is well approximated by a black membrane compactified on a square torus T

2 with
side length L ∼ a and with SD−4 size ∼ r0. The angular velocity of the black hole
is always moderate, so it will not introduce large quantitative differences, but note
that the rotational axial symmetry of the MP black holes translates into only one
translational symmetry along the T

2, the other one being broken.
Using this analogue mapping of membranes and fastly rotating MP black holes,

[36] argued that the latter should exhibit a Gregory–Laflamme-type instability. Fur-
thermore, as reviewed in Sect. 6.3 it is known that the threshold mode of the
GL instability gives rise to a new branch of static non-uniform black strings and
branes [37, 38, 92]. In correspondence with this, [36] argued that it is natural to
conjecture the existence of new branches of axisymmetric ‘lumpy’ (or ‘pinched’)
black holes, branching off from the MP solutions along the stationary axisymmetric
zero-mode perturbation of the GL-like instability,
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6.6.1.1 Map to Phases of KK Black Holes on the Torus

In [30] this analogy was pushed further by drawing a correspondence between the
phases of KK black holes on the torus (see Sect. 6.3.4) and the phases of higher-
dimensional black holes, as illustrated in Fig. 6.4. Here we have restricted to non-
uniformities of the membrane along only of the two brane directions, since including
non-uniformity in a second direction would not have a counterpart for rotating black
holes. These would break axial symmetry and hence would be radiated away. Other
limitations of the analogy are discussed in detail in [30].

Using the correspondence between the phases of the two systems, one can
import, at least qualitatively, the known phase diagram of black membranes on
M D−2 ×T

2 onto the phase diagram of rotating black objects in M D. To this end
one needs to first establish the map between quantities on each side of this corre-
spondence. For unit mass, the quantities � (see (6.8)) and j (see (6.65)) measure

(iv)

r
0

r
0

L

L

a

(i)

(ii)

(iii)

Fig. 6.4 Correspondence between phases of black membranes wrapped on a T
2 of side L (left) and

fastly rotating MP black holes with rotation parameter a ∼ L ≥ r0 (right: must be rotated along a
vertical axis): (i) uniform black membrane and MP black hole; (ii) non-uniform black membrane
and pinched black hole; (iii) pinched-off membrane and black hole; (iv) localized black string and
black ring. Reprinted from [30]
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the (linear) size of the horizon along the torus or rotation plane, respectively. Then
aH(�) for KK black holes on M n+2×T

2 is analogous (up to constants) to aH( j) for
rotating black holes in M n+4.

More precisely, although the normalization of magnitudes in (6.65) and (6.8)
is different, the functional dependence of aH on � or j must be parametrically the
same in both functions, at least in the regime where the analogy is precise. As a
check on this, note that the function aH(�) in (6.23) for the uniform black membrane
exhibits exactly the same functional form (6.66) as aH( j) for the MP black hole in
the ultra-spinning limit. Similarly, (6.24) for the localized black string shows the
same functional form as (6.66) for the black ring in the large j limit. The most
important application of the analogy, though, is to non-uniform membrane phases
(see (6.25)), providing information about the phases of pinched rotating black holes
and how they connect to MP black holes and black rings.

6.6.2 Phase Diagram of Neutral Rotating Black Holes on MMM D

We present here the main points of the proposed phase diagram [30] of neutral
rotating black holes (with one angular momentum) in asymptotically flat space that
follows from the analogy described above. To this end, we recall that the phases of
KK black holes on a two-torus were discussed in Sect. 6.3.4 and depicted in the
representative phase diagram in Fig. 6.2.

6.6.2.1 Main Sequence

The analogy developed above suggests that the phase diagram of rotating black
holes in the range j > jmem where MP black holes behave like black membranes is
qualitatively the same as that for KK black holes on the torus (see Fig. 6.2), with a
pinched (lumpy) rotating black hole connecting the MP black hole with the black
ring. This phase is depicted in Fig. 6.3 as a gray line emerging tangentially from
the MP black hole curve at a critical value jGL that is currently unknown. Argu-
ments were given in [36] to the effect that jGL ≥ jmem, consistent with the analogy.
As one moves along the gray line in Fig. 6.3 in the direction away from the MP
curve, the pinch at the rotation axis of these black holes grows deeper. Eventually,
as depicted in Fig. 6.4, the horizon pinches down to zero thickness at the axis and
then the solutions connect to the black ring phase. Note also that we may have the
‘swallowtail’ structure of first-order phase transitions (as depicted in Fig. 6.3), or
instead that of second-order phase transitions (see Fig. 4 of [30]). It may not be
unreasonable to expect that a swallowtail appears at least for the lowest dimen-
sions D = 6,7, . . . , since this is in fact the same type of phase structure that appears
for D = 5.
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aH

j

Fig. 6.5 Proposal for the phase diagram of thermal equilibrium phases of rotating black holes
in D ≥ 6 with one angular momentum. The solid lines and figures have significant arguments in
their favor, while the dashed lines and figures might not exist and admit conceivable, but more
complicated, alternatives. Some features have been drawn arbitrarily, e.g., at any given bifurcation
and in any dimension one may either have smooth connections or swallowtails with cusps. If ther-
mal equilibrium is not imposed, the whole semi-infinite strip 0 < aH < aH( j = 0), 0 ≤ j < ∞, is
covered, and multi-rings are possible. Reprinted from [30]

Beyond this main sequence, [30] presents arguments for further completion of
the phase diagram, which is summarized in Fig. 6.5. The most important features
are as follows.

6.6.2.2 Infinite Sequence of Lumpy (Pinched) Black Holes

Another observation based on the membrane analogy is that the phase diagram
of rotating black holes should also exhibit an infinite sequence [30, 36] of lumpy
(pinched) black holes emerging from the curve of MP black holes at increasing val-
ues of j. These are the analogues of the k-copied phases in the phase diagram of KK
black holes that appear at increasing � according to (6.26). In this connection note
that for the GL zero modes of MP black holes one must choose axially symmetric
combinations, implying a change of basis from plane waves exp(ikGLz) to Bessel
functions. Axially symmetric modes have a profile J0(kGLasinθ) [36]. The main
point here is that the wavelength λGL (see (6.15)) of the GL zero mode remains the
same in the two analogue systems, to first approximation, even if the profiles are not
the same. One is thus led to the existence of an infinite sequence of pinched black

hole phases emanating from the MP curve at increasing values j(k)GL.
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6.6.2.3 Black Saturn

If we focus on the first copy (k = 2), on the KK black hole side this corresponds
to a non-uniform membrane on T

2 with a GL zero-mode perturbation of the mem-
brane with two minima, which grows to merge with a configuration of two identical
black strings localized on the torus. For the MP black hole, the analogue is the de-
velopment of a circular pinch, which then grows deeper until the merger with a
black Saturn configuration in thermal equilibrium. Thermal equilibrium, i.e., equal
temperature and angular velocity on all disconnected components of the event hori-
zon, is in fact naturally expected for solutions that merge with pinched black holes,
since the temperature and angular velocity of the latter should be uniform on the
horizon all the way down to the merger, and we do not expect them to jump discon-
tinuously there. These appear to be the natural higher-dimensional generalization
of the five-dimensional black Saturn [17], and one may invoke the same arguments
as those in [18]. When the size of the central black hole is small compared to the
radius of the black ring, the interaction between the two objects is small and, to a
first approximation, one can simply combine them linearly. It follows that, under
the assumption of equal temperatures and angular velocities for the two black ob-
jects in the black Saturn, as j is increased a larger fraction of the total mass and
the total angular momentum is carried by the black ring, and less by the central
black hole. Then, this black Saturn curve must asymptote to the curve of a single
black ring.

6.6.2.4 Pancaked and Pinched Black Saturns

The existence of these phases and their appearance in the phase diagram in Fig. 6.5
(in which they appear dashed) is based on comparatively less compelling arguments.
Nevertheless, these conjectural phases provide a simple and natural way of complet-
ing the curves in the phase diagram that is consistent with the available information.
We refer to [30] for further details on these phases.

It should also be noted that in the diagram of Fig. 6.5 only the thermal equilibrium
phases among the possible multi-black hole phases are represented. The existence
of multi-black rings, with or without a central black hole, in thermal equilibrium is
not expected. In general one does expect the existence of multi-black ring configu-
rations, possibly with a central black hole, in which the different black objects have
different surface gravities and different angular velocities. These configurations can
be seen as the analogue of the multi-localized string configurations on the torus that
can be obtained from multi-black hole configurations on the circle [35] discussed in
Sect. 6.4 by adding a uniform direction.

6.7 Outlook

We conclude by briefly presenting a number of important issues and questions for
future research. See also the reviews [1–4] for further discussion and other open
problems.
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6.7.1 Stability

In both classes discussed in this lecture it would be interesting to further study the
stability of the various solutions. For KK black holes, this includes the classical sta-
bility of the non-uniform black string and the localized black hole. For the rotating
black hole case, we note that black rings at large j in any D ≥ 5 are expected to
suffer from a GL instability that creates ripples along the S1 and presumably frag-
ments the black ring into black holes flying apart [16, 103, 104]. This instability
may switch off at j ∼ O(1). In analogy to the five-dimensional case [104, 107], one
could also study turning points of j. If these are absent, pinched black holes would
presumably be stable to radial perturbations.

6.7.2 Other Compactified Solutions

It would also be interesting to examine the existence of other classes of solutions
with a compactified direction. For example in [108] a supersymmetric rotating black
hole in a compactified spacetime was found and charged black holes in compacti-
fied spacetimes are considered in [109]. In another direction, new solutions with
Kaluza–Klein boundary conditions for anti-de-Sitter spacetimes have recently been
constructed in [110, 111]. Finally, rotating non-uniform solutions in KK space have
been constructed numerically in [112] (see also [113]).

6.7.3 Numerical Solutions

For both classes of higher-dimensional black holes presented in this lecture, it would
be interesting to attempt to further apply numerical techniques in order to construct
the new solutions. For example, for multi-black hole configurations on the cylin-
der this could confirm whether there are multi-black hole solutions for which the
temperatures converge when approaching the merger points (as discussed in [35]).
Furthermore, one could try to confirm the existence of the conjectured lumpy black
holes (see Sect. 6.4.3). Similarly, for rotating black holes, numerical construction
of the entire black ring phase and of the pinched black hole phase would be very
interesting.

6.7.4 Effective Field Theory Techniques

As mentioned in Sect. 6.2.2, an alternative to the matched expansion is the use of
classical effective field theory [44, 45] to obtain the corrected thermodynamics of
new solutions in a perturbative expansion. It would be interesting to use this method
to go beyond the first order for the solutions discussed in this lecture and apply it to
other extended brane-like black holes with or without rotation.
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6.7.5 Other Black Rings

The method used to construct thin black rings in asymptotically flat space can also
be used to study thin black rings in external gravitational potentials, yielding, e.g.,
black Saturn or black rings in AdS or dS spacetime.7 Similarly, one could study
black rings with charges [115, 116] and with dipoles [99]. In this connection we
note that the existence of small supersymmetric black rings in D ≥ 5 was argued
in [117].

6.7.6 More Rotation Parameters

One may try to extend the analysis to black rings with horizon S1 × Sn+1 with ro-
tation not only along S1 but also in the Sn+1. Rotation in the Sn+1 will introduce
particularly rich dynamics for n ≥ 3, since it is then possible to have ultra-spinning
regimes for this rotation too, leading to pinches of the Sn+1 and further connections
to phases with horizon S1 ×S1 ×Sn, and so forth.

6.7.7 Blackfolds

Following the construction in Sect. 6.5, one can envision many generalizations. In
this way one could study the possible existence of more general blackfolds, ob-
tained by taking a black p-brane with horizon topology R p × Sq and bending R p

to form some compact manifold. One must then find out under which conditions
a curved black p-brane can satisfy the equilibrium equation (6.50). This method is
constructive and uses dynamical information to determine possible horizon geome-
tries. In contrast, conventional approaches based on topological considerations are
non-constructive and have only found very weak restrictions in six or more dimen-
sions [118, 119].

6.7.8 Plasma Balls and Rings

There is also another more indirect approach to higher-dimensional black rings in
AdS, using the AdS/CFT correspondence. In [120] stationary, axially symmetric
spinning configurations of plasma in N = 4 SYM theory compactified to d = 3 on
a Scherk–Schwarz circle were studied. On the gravity side, these correspond to large
rotating black holes and black rings in the dual Scherk–Schwarz compactified AdS5

space. Interestingly, the phase diagram of these rotating fluid configurations, even if

7 In [114] the existence of supersymmetric black rings in AdS is considered.
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dual to black holes larger than the AdS radius, reproduces many of the qualitative
features of the MP black holes and black rings in five-dimensional flat spacetime.
Higher-dimensional generalizations of this setup give predictions for the phases of
black holes in Scherk–Schwarz compactified AdSD with D > 5. In this way, evi-
dence was found [120] for rotating black rings and ‘pinched’ black holes in AdS6,
which can be considered as the AdS-analogues of the phases conjectured in [30, 36],
discussed in Sects. 6.5 and 6.6.

6.7.9 Microscopic Entropy for Three-Charge Black Holes

One could extend the work of [121, 122] by applying the boost/U-duality map of
[11] to the multi-black hole configurations of [35]. In particular, this would enable to
compute the first correction to the finite entropy of the resulting three-charge multi-
black hole configurations on a circle. It would be interesting to then try to derive
these expressions from a microscopic calculation following the single three-charge
black hole case considered in [121, 123].

6.7.10 Braneworld Black Holes

The higher-dimensional black holes and branes described in this lecture also ap-
pear naturally in the discussion of the braneworld model of large extra dimensions
[13, 124]. In other braneworld models such as the one proposed by Randall and Sun-
drum [125, 126] the geometry is warped in the extra direction and the discovery of
black hole solutions in this context has proven more difficult. It would be interesting
to consider the higher-dimensional black hole solutions considered in this lecture in
these contexts.
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Chapter 7
Braneworld Black Holes

R. Gregory

Abstract In this article, I give an introduction to and overview of braneworlds
and black holes in the context of warped compactifications. I first describe the gen-
eral paradigm of braneworlds and introduce the Randall–Sundrum model. I discuss
braneworld gravity, both using perturbation theory and also nonperturbative results.
I then discuss black holes on the brane, the obstructions to finding exact solutions,
and ways of tackling these difficulties. I describe some known solutions and con-
clude with some open questions and controversies.

7.1 Introduction

Nearly a century ago, Kaluza and Klein theorized that by adding an extra dimension
to space, you could unify electromagnetism with gravity. Thus our first “unified
theory” was born – at the price of an extra unseen dimension. Nowadays, extra
dimensions are an integral part of fundamental theoretical physics, and the conse-
quences of devising consistent means of hiding these extra dimension have led to an
explosion of activity in recent years in string theory, cosmology, and phenomenol-
ogy. Braneworlds are just part of this general story and represent a particular way of
dealing with the extra dimensions that is empirical, but precise and calculable. They
have proved indispensable for developing ideas and methods which have then been
used in more esoteric but fundamentally grounded models in string theory. These
lectures are about braneworlds and deal with the deeply interesting, but thorny issue
of how to describe braneworld black holes.

Simply put, a braneworld is a slice through spacetime on which we live. We
cannot (easily) see the extra dimensions perpendicular to our slice, as all of our stan-
dard physics is confined. We can, however, deduce those extra dimensions by care-
fully monitoring the behaviour of gravity. Confinement to a brane may at first sound
counter-intuitive; however, it is in fact a common occurrence. The first braneworld
scenarios [1–3] used topological defects to model the braneworld, with condensates
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and zero modes producing confinement. In string theory, D-branes have “confined”
gauge theories on their worldvolumes [4, 5] and heterotic M-theory has a natural
domain wall structure [6, 7].

The new phenomenology of braneworld scenarios is primarily located in the
gravitational sector, with a particularly nice geometric resolution of the hierarchy
problem [8–10]. The scenario has however far outgrown these initial particle phe-
nomenology motivations and has proved a fertile testbed for new possibilities in cos-
mology, astrophysics, and quantum gravity. One of the most popular models with
warped extra dimensions is that of Randall and Sundrum (RS) [11, 12], which con-
sists of a domain wall universe living in 5D anti-de Sitter (adS) spacetime, and will
be the setting for these lectures. Interestingly, although the RS model is an empirical
braneworld set-up it can be related to, or motivated by, string theory in several ways.
First of all, it is notionally similar to the heterotic M-theory set-up, in that the initial
RS model had two walls at the end of an interval. However, this similarity is no-
tional only, and calculationally, the gravitational spectrum of GR in five dimensions
is very different from the spectrum of low-energy heterotic M-theory [6, 7]. A more
fruitful and robust parallel occurs with type IIB string theory, where the RS model
can (in some rough sense) be associated with the near horizon limit of a stack of
D3-branes. Viewed in this context, the RS model provides an excellent opportunity
to use and test ideas from the gauge/gravity or adS/CFT correspondence [13, 14].

The RS model is however particularly valuable as a concrete and explicit cal-
culational testbed for any theory with extra dimensions in which gravity is able to
probe and modify these hidden directions. One of the problems with having extra
dimensions is that we have to hide evidence of their existence. We not only have
to reproduce gravitational and standard model physics on the requisite scales, but
also have to ensure that we do not create any additional unwanted physics. With RS,
the gravitational physics is self-consistent and calculable. We can therefore compute
the cosmological and astrophysical consequences of the extra dimension in a wide
variety of physically interesting cases.

Black holes are perhaps the most interesting physical object to explore within
the braneworld framework of extra dimensions. From the Kaluza–Klein point of
view, extra dimensions show up as extra charges black holes can carry from the 4D
point of view [15–18]; however, in these solutions the black hole is “smeared” along
the extra dimension rather than localized. Braneworld scenarios are the antithesis
of KK compactifications, consisting of highly localized and strongly warped extra
dimensions, and therefore the implications of this strongly localized and gravitating
brane for black hole physics are of particular physical and theoretical interest. We
now have compelling evidence of the existence of black holes in nature, from stellar-
sized black holes in binary systems, observed via X-ray emission from accretion
discs [19], to supermassive black holes at the centre of galaxies [20, 21], which in
the case of our own Milky Way can be seen quite clearly from stellar orbits [22].
As observational evidence accrues and becomes more robust, the bounds on the
innermost stable orbit of the black hole (obtained from iron emission lines [23, 24])
may eventually start to confront the theoretical limit from the 4D Kerr metric, and
possibly provide signatures of extra dimensions, for which the bounds can be quite
different [25].
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Turning to the small scale, and taking seriously the possibility that braneworlds
can provide a resolution of the hierarchy problem via a geometric renormalization
of the Newton constant [8–10], raises the possibility that mini black holes can be
produced in particle collisions [26, 27]. Understanding the formation and decay of
these highly energetic black holes will then allow us to predict signatures for black
hole formation at the LHC [28–31] and is the topic of a companion set of lectures
at this school [32].

Finally, there is also a compelling theoretical reason for studying braneworld
black hole solutions, and that is the parallel between the RS model and the adS/CFT
conjecture [33–37]. As we explore more concretely in Sect. 7.4, by taking the near
horizon limit of a stack of D3-branes, the RS model can be thought of as cutting off
the spacetime outside the D-branes; the adS curvature of the RS bulk is therefore
given rather precisely in terms of the D3-brane charge and the string scale. Thus, we
might expect a parallel between classical braneworld gravity and quantum correc-
tions on the brane. The possibility of finding a calculational handle for computing
the backreaction of Hawking radiation [38–40] is extremely attractive, and of course
can potentially feed back into the issue of mini black holes at the LHC.

In these lectures, we will review the current status of black hole solutions in
the Randall–Sundrum model, first reviewing the framework in some detail, con-
centrating on gravitational issues, and the link with adS/CFT and holography. We
will see why it is so difficult to find an exact solution, before covering approximate
methods and solutions for brane black holes. Finally, we describe objections to the
holographic picture and some recent developments in the closely related Karch–
Randall [41] set-up.

7.2 Some Randall–Sundrum Essentials

The Randall–Sundrum model has one (or two) domain walls situated as minimal
submanifolds in adS spacetime. In its usual form, the spacetime is

ds2 = e−2k|z| [dt2 −dx2]−dz2 , (7.1)

where k = L−1 is the inverse curvature radius of the negatively curved 5D adS space-
time. Here, the spacetime is constructed so that there are 4D flat slices stacked along
the fifth z-dimension, which have a z-dependent conformal prefactor known as the
warp factor. Since this warp factor has a cusp at z = 0, this indicates the presence
of a domain wall – the braneworld – which represents an exactly flat Minkowski
universe. The reason for choosing this particular slicing of adS spacetime is to have
a flat Minkowski metric on the brane, i.e. to choose the “standard vacuum”.

The RS spacetime is an example of a codimension 1 braneworld, where we have
one extra dimension. In this case, there is a well-defined prescription for finding
gravitational solutions with an infinitesimally thin brane: the Israel equations [42],
which are essentially a physicist’s tool extracted from the Gauss–Codazzi formalism
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for the differential geometry of submanifolds. Since this formalism is so widely
used, it is worth reviewing it briefly here (see also [43–45]).

In the Israel prescription, we rewrite our 5D spacetime as a 4D base space, with
coordinates xμ , plus a normal distance, z, from the “wall”. The 4D coordinates re-
main constant along geodesics normal to the wall, thus giving a 5D coordinate sys-
tem {xμ ,z}. This coordinate system is valid within the radius of curvature of the
wall, and splits the tangent space naturally into parallel and normal components,
and the metric in general has the form

ds2 = γμν(x,z)dxμdxν −dz2 . (7.2)

Choosing the coordinates in this way results in the nontrivial content of the geometry
being located in the 4D metric γμν , and the fifth metric component is always unity
because z is the proper distance from the brane. na = δ a

z is the normal to the brane,
and γμν |z=0 is the intrinsic metric on the brane. Note that γμν lies in the tangent
bundle of the brane as a manifold (i.e. is a 4D tensor) and has a 5D counterpart, the
first fundamental form which we denote as

γ̂ab = gab +nanb = diag(γμν ,0) . (7.3)

γ̂ab is a 5D tensor, but acts as a projection, wiping out any components orthogonal
to the brane. γ and γ̂ contain the same physical information; the distinction is purely
mathematical; however we will keep it for the purposes of this technical discussion.
This particular coordinate or gauge choice is called the Gaussian normal (GN) gauge
and is the space-like equivalent of the ADM synchronous gauge.

Surfaces can curve in the ambient manifold, whether or not that is itself curved
(see Fig. 7.1). This is measured by the extrinsic curvature or second fundamental
form and is defined via

Kab = γ̂ c
a γ̂ d

c ∇bnd . (7.4)

We can use the Riemann identity ∇c∇dna −∇d∇cna = Ra
bcdnd to get the Gauss–

Codazzi relations:

(4)Ra
bcd = γ̂ a

e γ̂
f

b γ̂
g
c γ̂ i

dRe
f gi +Ka

d Kbc −Ka
c Kbd (7.5)

⇒ (4)Rbd = γ̂ a
b γ̂

c
d

(
Rac +Raec f nen f )+KadKa

b −KKbd . (7.6)

n

z=0

z=1

Fig. 7.1 An illustration of the curved brane and the Gaussian normal coordinate system. The brane
is the solid line at z = 0; moving out a uniform distance from the brane gives a new surface at z = 1.
The normal to the brane n = ∂/∂ z is indicated. As we move from z = 0 to z = 1, distances along
the brane will change in general. This is reflected in the extrinsic curvature (7.4)
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In this last relation, we have the 5D Ricci tensor, which we can replace with the
energy momentum tensor via Einstein’s equations; we also have a term which a
second use of the Riemann identity allows us to write as a Lie derivative of the
extrinsic curvature across the brane:

Raec f nen f = −nb∇bKac −Kd
c Kad = −LnKac +Kd

a Kcd , (7.7)

thus allowing us to rewrite the Gauss–Codazzi equations in terms of the extrinsic
curvature and the energy momentum tensor:

LnKab = γ̂ c
a γ̂ d

b Tcd − 1
3 T γ̂ab +2Kc

aKbc −KKab − (4)Rab . (7.8)

Therefore, if we imagine our brane to be infinitesimally thin, having a distributional
energy momentum, Tab δ (z), then we see that the extrinsic curvature must have a
jump across the brane. Integrating this out, we get the Israel equations:

ΔKab = Kab(z = 0+)−Kab(z = 0−) = 8πG5
(
Tab − 1

3 T γ̂ab
)

. (7.9)

Returning to the Randall–Sundrum metric, (7.1), we see that

Kμν = −Γ z
μνnz = ∓ke−2k|z|ημν (7.10)

(where we are now dropping the distinction between the brane tangent space and
the bulk tangent space, as the situation is physically clear). Using (7.9) we see that
the brane has an energy momentum tensor proportional to the metric on the brane:

Tμν = ERSημν =
6k

8πG5
ημν . (7.11)

Notice the very precise form of this energy momentum. First, because it is pro-
portional to the intrinsic metric, this means that the brane has tension (rather than
pressure) and this tension is exactly equal to its energy, E = T . Thus the brane
energy momentum has exactly the same form as a cosmological constant term on
the brane. Second, the actual value of this tension is precisely related to the bulk
cosmological constant:

Λ = −6k2 = − (8πG5ERS)2

6
. (7.12)

This is sometimes referred to as the fine-tuned or critical RS brane. As we will see
later, this relation can be relaxed, leading to de Sitter or anti-de Sitter RS branes (the
latter of which are also known as Karch–Randall (KR) branes [41]).

7.3 Gravity in the Randall–Sundrum Model

Obviously the RS model can only describe our real universe if it correctly repro-
duces gravitational physics at experimentally tested scales. This means we have
to be able to reproduce Einstein gravity in our solar system, and the standard
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cosmological model for our universe. While the Israel equations give us the gen-
eral formalism for getting our braneworld metric, finding actual solutions can be
a far trickier matter, as indeed finding a general solution of Einstein’s equations
is a tricky matter! We therefore resort, as with standard gravity, to two main
approaches:

• Local physics, or perturbation theory, and
• “Big Picture” or geometry, finding exact solutions assuming symmetries.

In either case, we have to accept that gravity on the brane is a projection of the full
higher dimensional nature of gravity, and is therefore a derived quantity.

7.3.1 Perturbation Theory

In general relativity (GR), classical perturbation theory involves perturbing the
metric

gab → gab +hab (7.13)

around a given background solution. There are three main issues to bear in mind:

1. hab is a perturbation and should therefore be “small”. What does this mean? In
practice we have to be careful about our coordinate system and always look at
h in a regular system. For the Schwarzschild solution, for example, this means
using Kruskal coordinates.

2. Gauge freedom: GR has a large gauge group – physics is invariant under gen-
eral coordinate transformations (GCT’s), and there are many gauge degrees of
freedom in hab. For example, in 4D, hab has 10 independent components, but the
graviton has only 2 physical degrees of freedom. Under a GCT

Xa → Xa +ξ a , gab → gab +Lξgab , (7.14)

hence
δgab = ξa;b +ξb;a (7.15)

and we can use this to make a choice of gauge. A common choice for relativists
is the harmonic gauge

h̄a
b;a = ha

b;a − 1
2 ha

a;b = 0 , (7.16)

and in vacuo we can also choose ha
a = 0: the transverse tracefree (TTF) gauge.

Note that this does not uniquely specify the gauge, e.g. ξ a
;a = 0 = ∇2ξ a gives an

allowed gauge transformation.
3. Finally, we need the perturbation of the Ricci tensor:

δRab = − 1
2∇

2hab −Racbdhcd +Rc
(ahb)c +∇(a∇chb)c = − 1

2ΔLhab (7.17)

often called the Lichnerowicz operator.
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The simplest way to perturb the brane system is to take a GN system, in which
the brane stays at z = 0:

gzz = −1 gzμ = 0 . (7.18)

The remaining gauge freedom allowed is

ξ z = f (xμ) , ξ μ =
∫

a−2 f,νημν +ζ μ(xμ) . (7.19)

We can now input the purely 4D perturbation into the Lichnerowicz operator, and
after some algebra, the perturbation equations reduce to

a−2
[

a2
(

a−2hλλ

)′
]′

= −16πG5

3
δ (z)a−2T λ

λ , (7.20)

[
a−2

(
hλλ ,μ −hλμ,λ

)]′
= 0, (7.21)

a−2∂ 2hμν −a−2
[
a4 (

a−2hμν
)′]′ − 2a−2h̄λ(μ,ν)λ ,

−aa′ημν
(

a−2hλλ

)′
= −16πG5δ (z)

[
Tμν − 1

3T λ
λ ημν

]
, (7.22)

where brane indices are raised and lowered with ημν , and we allow for a matter
perturbation confined to the brane:

Tμν =
6k

8πG5
+Tμν . (7.23)

It is easy to see that the RS gauge is only consistent for vacuum perturbations
and that the zero modes have the behaviour ∼ a2 (the graviton [11, 46, 47]) and
∼a2 ∫

a−4 (the radion [48]).
A complete set of solutions to the free equations is readily found to be hμν ∝

eip·xum(z) with

um(z) =
√

m
2k

J1(m
k )N2(mζ )−N1(m

k )J2(mζ )√
J1(m

k )2 +N1(m
k )2

, (7.24)

where ζ = ekz/k, from which we can construct the Green’s function:

GR(x,x′) = −
∫

d4 p
(2π)4 eip·(x−x′)

[
ka2(z)a2(z′)

p2 − (ω+ iε)2 +
∫ ∞

0
dm

um(z)um(z′)
m2 +p2 − (ω+ iε)2

]
.

(7.25)

This has the structure of a zero mode (the part proportional to a2), and a con-
tinuum of KK states. This is seen more clearly by looking at the restriction to a
perturbation in the brane induced by a particle on the brane, for which
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GR(x,0,x′,0) = kD0(x− x′)+
∫ ∞

0
dm um(0)2Dm(x− x′) . (7.26)

However, we have to remember that the RS gauge is only consistent in the absence
of sources; in the presence of sources we have to fix the trace of the perturbation
to satisfy the Lichnerowicz equation. Strictly speaking, we take the general metric
perturbation, hμν , and decompose it into its irreducible components with respect to
the 4D Lorentz group (see [49]). This allows for a tensor (TTF) mode, a vector, and
two scalars in general:

hμν = hTTμν +Aν ,μ +Aμ,ν +φ,μν −
1
4
ημν∂ 2φ +

h
4
ημν . (7.27)

On shell, it can be shown that this reduces (up to purely 4D gauge transformations)
to the following expression:

hμν = hTTμν −
1
k

f,μν +2ka2 fημν , (7.28)

which physically corresponds to the TTF 4D tensor hTT, and a scalar, f (xμ), which
can be interpreted as a bending of the brane with respect to an observer at infinity
[50] (see Fig. 7.2a). This brane bending term couples to the trace of the energy
momentum perturbation on the brane via (7.20), which implies a 4D equation for f :

∂ 2 f =
8πG5T

λ
λ

6
⇒ f = 8πG5

∫
D0(x− x′)

T λ
λ (x′)

6
. (7.29)

Solving (7.22), and pulling all this information together, we can now write the
solution on the brane:

hμν = −16πG5

∫
GR(x,0;x′,0)[Tμν − 1

3T ημν ]+2kημν
∫

D0(x− x′)
8πG5T

λ
λ

6
.

(7.30)

At mid-to-long-range scales on the brane, the zero mode dominates the integral and
so we get

hμν = −16πG5k
∫

D0(x− x′)[Tμν − 1
2T ημν ] . (7.31)

Thus, if we identify GN = G5k as the 4D Newton constant, we have precisely 4D
perturbative Einstein gravity with the correct tensor structure.

The effect of the massive KK modes on the Newtonian potential is also easily
extracted using asymptotics of Bessel functions:

um(0) =
√

m
2k

J1
(

m
k

)
N2

(
m
k

)
− J2

(
m
k

)
N1

(
m
k

)
[
J2

1

(
m
k

)
+N2

1

(
m
k

)]1/2
∼ −

√
m
2k

m/k � 1 . (7.32)

To see how these feed into corrections to Einstein gravity, consider the effect of a
point mass source T00 ∼ Mδ (z)δ (3)(r):
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Fig. 7.2 An illustration of
the effects of RS gravity.
On the left, the brane bends
in response to matter, and
on the right, a figurative
representation of the lines of
force for RS gravity

M
f

hμν = −16πGN

∫ (
D0(x− x′)[Tμν − 1

2T ημν ]

+
∫ ∞

0

mdm
2k2 Dm(x− x′)[Tμν − 1

3T ημν ]
)

, (7.33)

giving

htt = −2GNM
r

(
1+

2
3k2r2

)
, hi j = −2GNM

r

(
1+

1
3k2r2

)
δi j . (7.34)

Note this is in homogeneous gauge; transforming to the area gauge (where the area
of 2-spheres is 4πr2) we have to leading order in GNM

ds2 =
(

1− 2GNM
r̂

− 4GNM
3k2r̂3

)
dt2 − dr̂2(

1− 2GN M
r̂ − 2GN M

k2 r̂3

) − r̂2dΩ 2 . (7.35)

We can visualize RS gravity as lines of force spreading out from the brane, but being
“pushed back” by the negative bulk curvature. At small scales, the lines of force
leave the brane and gravity is 5D and weaker. At larger scales, the bulk curvature
bends the lines of force back onto the brane, and so gravity returns to being a 4D
force law (see Fig. 7.2b).

This is weak gravity, but what about strong gravity, such as black holes or
cosmology?
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7.3.2 Cosmology

For a cosmological brane, we have to ask whether there are surfaces of lower di-
mensionality which have the interpretation of an expanding universe. Recall that in
standard cosmology, homogeneity and isotropy give a simple model of the universe
in which everything depends on a single scale factor a(t)k:

ds2 = dt2 −a2(t)dx2
κ (7.36)

where the spatial metric dx2
κ is a surface of constant curvature κ = 0,±1, and in

which a(t) satisfies a simple first-order Friedman equation:

(
ȧ
a

)2

+
κ
a2 =

8πGN

3
ρ (7.37)

where ρ is the energy density of the universe, typically modelled by a perfect fluid
with some equation of state p = wρ .

For the cosmological braneworld, homogeneity and isotropy will still imply a
constant curvature spatial universe, but now our “scale factor” must depend not only
on time but on the distance into the bulk. The remaining part of the metric in the
t,z directions can be made conformally flat (any 2D metric can always be written
in a conformally flat form) and so we may write the overall geometry as [51]

ds2 = e2ν(t,z)(B(t,z))−2/3(dt2 −dz2)−B2/3
[

dχ2

1−κχ2 +χ2dΩ 2
II

]
. (7.38)

The rationale for this specific way of writing the scale factor becomes apparent once
the Einstein equations are analysed. Here, z is representing the bulk coordinate away
from the brane, though it no longer corresponds to proper distance. The brane sits at
z= 0, which can always be chosen to be the location of the brane. (The conformal
transformation t′ ±z′ = t±z± ζ (t±z) maintains the form of the metric while
taking an arbitrary wall trajectory z′ = ζ (t′) to z= 0.)

In addition, the presence of a cosmological fluid will alter the usual brane relation
E = T by adding additional energy, ρ , to E and subtracting pressure, p, from the
tension T . Thus our brane energy momentum will now be

T a
b = δ (z)diag (E +ρ, E − p, E − p, E − p,0) . (7.39)

If we now compute the bulk Einstein equations, the reason for writing the
metric in the slightly unusual form (7.38) becomes apparent. Using the lightcone
coordinates

x− =
t−z

2
, x+ =

t+z

2
. (7.40)

the bulk equations are
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B,+− =
(

2ΛB1/3 −6κB−1/3
)

e2ν , (7.41)

ν,+− =
(
Λ
3

B−2/3 +κB−4/3
)

e2ν , (7.42)

B,± [ln(B,±)],± = 2ν,±B,± . (7.43)

This system is completely integrable, giving, after a change of coordinates, the bulk
solution1

ds2 =
(
κ− Λ

6
r2 − μ

r2

)
dt2 −

(
κ− Λ

6
r2 − μ

r2

)−1

dr2 − r2dx2
κ (7.44)

which is clearly a black hole solution. The parameter μ is related to the mass of the
bulk black hole via [54]

M = 3πμ/8G5 . (7.45)

The change of coordinates results in a shift of the brane to

r = R(τ), (7.46)

where τ is the proper time of a brane observer.
Thus our cosmological brane is a slice of a black hole spacetime [33, 51, 55–61].

We can think of our brane as moving in the bulk, and as it moves through a warped
background, the brane will experience contraction or expansion as the surrounding
geometry contracts or expands. The Israel equations give the dynamical equations
for the brane trajectory R, which can be massaged into the familiar Friedman form:

(
Ṙ
R

)2

+
κ
R2 =

[8πG5(E +ρ)]2 +Λ
36

+
μ
R4 (7.47)

(see [51] for details). For a critical RS brane, which has E = 6k/8πG5, Λ = −6k2,
this gives (

Ṙ
R

)2

+
κ
R2 =

8πGNρ
3

+
(8πG5ρ)2

36
+

μ
R4 . (7.48)

As might have been expected from the calculation of linearized gravity, the dom-
inant form of this equation for small ρ is indeed the standard Friedman equation.
The effect of the brane shows up in the ρ2 corrections, dubbed the non-conventional
cosmology of the brane [58–61]. But most interesting from the point of view of
these lectures is the presence of the last term, which is directly a result of the bulk
black hole. This term, proportional to the mass parameter, takes the same functional
form as a radiation source on the brane. Of course, the presence of the bulk black
hole induces a periodicity in time in the Euclidean section, or, a finite temperature
for any quantum field theory in the spacetime. Computing the background Hawking
temperature of the black hole gives

1 Although note that there is a special case B = 1, 2Λ = 6κ , which is a near horizon limit of a black
hole metric and a critical point of the Einstein equations [52, 53].
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TH =

√
κ2 +4μk2

2πrh
, (7.49)

where rh is the location of the event horizon given by

k2r2
h =

1
2

[√
1+4μk2 −1

]
. (7.50)

For the case of the RS model, for which κ = 0, this gives

μ
R4 =

(πTH)4

k6R4 =
(πT )4

k2 , (7.51)

where T is now the comoving temperature on the brane. That this is suggestive of
the Stefan law, ρ ∝ T 4, is not a coincidence and is a theme we will pursue in the
next section.

7.4 Black Holes and Holography

Both the linearized gravity result for an isolated mass and the brane cosmology
metric suggest a somewhat deeper importance to braneworlds and black holes. The
corrections to the Newtonian potential (7.33) in fact coincide precisely with the 1-
loop corrections to the graviton propagator [36, 37, 62], and the cosmological dark
radiation term in the brane Friedman equation corresponds (up to a factor) to the
energy density of a conformal field theory at the Hawking temperature of the black
hole [33]. These clues, and analogies with lower dimensional branes, have led to
the black hole holographic conjecture of Emparan et al. [63] which states, loosely
speaking, that if we have a classical solution to the RS model then we can interpret
the braneworld as a quantum-corrected 4D spacetime. In the case of the black hole,
this would mean that we have a quantum-corrected black hole.

The reason for putting forward such a conjecture is based on the adS/CFT con-
jecture [13, 14] of string theory. In string theory, D-branes arise as the physical man-
ifestation of open-string Dirichlet boundary conditions. These D-branes are tangible
objects carrying mass, Ramond–Ramond charge, and with worldvolume gauge the-
ories to support the string endpoints [4, 5]. Furthermore, the supergravity solutions
which correspond to the mass and charge of a particular type of D-brane must de-
scribe the same objects. The metric for a stack of N coincident D3-branes is given by

ds2 =
(

1+
4πgNα ′2

r4

)−1/2

dx2
|| −

(
1+

4πgNα ′2

r4

)1/2

dx2
⊥, (7.52)

where g is the string coupling and α ′ = l2
s the string length scale. dx2

|| and dx2
⊥ are

the cartesian metrics of the spaces, respectively, parallel and perpendicular to the
brane and r is the radial coordinate in this latter space. We trust this supergravity
solution in regions where the spacetime curvature is small, i.e. L2 � α ′, where L
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is the ambient spacetime curvature. Obviously, this will be true at large r in (7.52);
however, at large r the effect of the branes is negligible. In order to trust the super-
gravity solution in regions where it is nontrivial, i.e. where r ∼ (4πgNα ′2)1/4, we
require gN � 1. In this case, we can effectively ignore the “1” in the prefactor, and
(7.52) is approximately

ds2 = α ′
[

(r/α ′)2
√

4πgN
dx2

|| −
√

4πgN
r2 dr2 −

√
4πgNdΩ 2

V

]
. (7.53)

This metric is adS5 ×S5. Thus, if we integrate over the S5, and identify

L = k−1 = (4πgN)1/4ls (7.54)

as the adS length scale, we can directly relate the near horizon régime of a stack of
D3-branes with the RS model. Furthermore, the 5D Newton constant will be given
in terms of the 10D Newton constant and the volume of the 5-sphere by

h̄G5 =
h̄G10

V5
=

g2α ′4(2π)7

16π4L5 =
πL3

2N2 . (7.55)

Thus we can relate finite and classical quantities in our 5D Einstein theory, such as
the adS curvature scale, L, and the gravitational constant, G5, to quantum mechani-
cal quantities such as h̄, and N, the number of D-branes. Indeed, we can potentially
take a classical limit, h̄ → 0, keeping our adS scale finite by simply simultaneously
taking N →∞. On the other hand, this stack of N D3-branes has a low-energy U(N)
worldvolume conformal field theory, and taking N → ∞ corresponds to the t’Hooft
limit of the gauge theory. Since we have set h̄ → 0, on the string side α ′ → 0 ensures
that only this low-energy sector remains. This is the essence of the adS/CFT corre-
spondence that certain strongly coupled conformal field theories are dual to string
theory on certain anti-de Sitter spacetimes.

What does this mean for the RS model? As Gubser first noted [33], brane cos-
mology with a black hole in the bulk has the appearance of a radiation cosmology
from the brane perspective. From the Hawking temperature of the bulk black hole,
the dark radiation term has the form (7.51), (πT )4L2. On the other hand, calculating
the energy of a CFT at finite temperature (at weak coupling) gives

ρ = 2π2cT 4, (7.56)

where c = h̄(N2 −1)/4 is the coefficient for the trace anomaly in super Yang–Mills
theory. Thus as N → ∞,

8πGNρCFT

3
=

4
3

GNL
2G5

(πT )4L2 . (7.57)

Clearly, if we identify GN = 2G5/L, then we see that the classical bulk black hole
has the effect on the brane of a thermal CFT at the comoving Hawking temperature
of the black hole up to the conventional strong/weak coupling factor of 4/3. Note
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that the factor of 2 in the definition of the 4D Newton’s constant is due to the fact that
in adS/CFT we have a bulk on only one side of the boundary, whereas in physical
braneworlds, we have bulk on each side of the brane. This effectively halves the
brane tension, which is the key factor in the relation between the brane and bulk
gravitational constants.

This rather physical picture of the interplay between the RS model and the
adS/CFT conjecture is further fleshed out by the work of Duff and Liu [36, 37],
who note that the linearized corrections to the graviton propagator, calculated in
(7.34), precisely agree with the 1-loop linearized corrections to flat space for a cen-
tral mass [62]. These results are extremely suggestive that a fully nonlinear classical
brane/bulk black hole solution would, from the brane point of view, correspond to
a quantum-corrected black hole. Indeed, it was this perspective that first led Tanaka
to conjecture that a braneworld black hole must therefore be time dependent, to
agree with the thermal Hawking radiation from a Schwarzschild black hole [64].
Emparan, Fabbri, and Kaloper then pointed out that the issue of time dependence is
linked to the choice of quantum vacuum and gave a comprehensive analysis of 3D
brane black holes, together with options for the RS black hole.

Roughly, the picture is as follows. If we consider a closed universe with a bulk
black hole, then the brane is precisely equidistant from the bulk black hole, and the
radiation on the brane is precisely thermal. However, we could imagine displacing
the brane slightly, which would introduce an inhomogeneity in the dark radiation on
the brane. Moving one side of the brane even closer to the bulk black hole would
then increase this distortion and would (hopefully!) correspond to a collapsing shell
of warm radiation on the brane. This could then form its own black hole, which from
the bulk perspective would correspond to the brane actually touching the black hole.
The brane would remain glued to the black hole for a while, but eventually would
separate, the process corresponding to black hole radiation (see Fig. 7.3).

BULK
BRANE

Fig. 7.3 A cartoon of the time-dependent radiating black hole from both the brane and the bulk
perspectives. A bulk black hole moves towards the brane, touches, then eventually recoils back into
the bulk. From the brane perspective this corresponds to anisotropic radiation steadily accreting
around a central point which finally forms a black hole, persists for a while radiating, then finally
evaporates
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On the other hand, it is always possible that there does exist a static black hole
solution, which asymptotically has the form of (7.35). Such a black hole would,
according to EFK, necessarily have a singular horizon. This classical solution would
be a 5D version of the C-metric [65], which is a solution representing two black
holes accelerating away from each other. The black holes are being accelerated by
two cosmic strings, one for each hole, which pull the black hole out to infinity. The
exact purely gravitational solution has a conical deficit which can be smoothed out
by a U(1) vortex [66–69], rendering the spacetime nonsingular apart from the central
singularities of the black holes. It is then straightforward to slice this spacetime
with a brane [70–72], thus producing a 3D braneworld with a black hole. A positive
tension brane retains the bulk without the cosmic string; hence these braneworld
black holes do not need any further regularization. It may seem strange that a static
black hole on the brane is accelerating, but it is no more unusual than the fact that
we are in an accelerating frame on the surface of the Earth. Geodesics in the RS
bulk actually curve away from the brane:

2kz(t) ∼ ln(1+ k2t2). (7.58)

Thus any observer glued to the brane is necessarily in an accelerating frame.
Moving up one dimension however changes the picture completely. The math-

ematics of the pure gravitational equations is now no longer amenable to analytic
study, and no known C-metric exists. Even higher dimensional “cosmic strings”
now have codimension three and are strongly gravitating [73, 74] with potentially
singular geometries. We will now look at this problem in more detail.

7.5 Black Hole Metric

The first attempt to find a black hole on an RS brane was that of Chamblin, Hawking,
and Reall (CHR) [75], in which they replaced the Minkowski metric in (7.1) by
the Schwarzschild metric (indeed, we can replace η in (7.1) by any 4D Ricci-flat
metric):

ds2 = a2(z)

[(
1− 2M

r

)
dt2 −

(
1− 2M

r

)−1

dr2 − r2dΩ 2
II

]
−dz2 . (7.59)

This is the only known exact solution looking like a black hole from the brane
point of view. Unfortunately, it does not correspond to what we would expect for
a brane black hole. If matter is confined to our brane, we would expect that any
gravitational effect is localized near the brane. For a collapsed star, we would also
intuitively expect that while the horizon might well extend out into the bulk, it too
should be localized near the brane, and the singularity should not extend out into
the bulk. The problem with the CHR black string, (7.59), is that it extends all the
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way out to the adS horizon; moreover, at this surface the black hole horizon actually
becomes singular!

There is however another, more serious, problem with the CHR black string, and
that is that it suffers from a classical instability [76]. Black string instabilities were
first discovered in vacuum, [77, 78], for the Kaluza–Klein black string:

ds2 =
(

1− 2M
r

)
dt2 −

(
1− 2M

r

)−1

dr2 − r2dΩ 2
II −dz2 . (7.60)

This has a cylindrical event horizon, with entropy 4πGNM2. On the other hand,
assuming a KK compactification scale of LKK , a 5D black hole of the same mass as
the string (7.60) has an entropy of 8

√
2πLKKGN M3/2/3

√
3. Thus, for small enough

masses relative to the compactification scale (GNM ≤ 2LKK/27π) a standard 5D
black hole has higher entropy than the string, and thus the string should be either
perturbatively or nonperturbatively unstable.

The existence of the instability can be confirmed by solving the Lichnerowicz
equation:

∇2hab +2Ra b
c dhcd = 0 . (7.61)

There is a subtlety involving the initial data surface, which must be taken to touch
the future event horizon (the black hole generically forms from gravitational col-
lapse); however, there is an unstable s-mode with the form

hab = eiμzeΩ t

⎡
⎢⎢⎢⎢⎣

Htt(h) h(r) 0 0 0
h Hrr(h) 0 0 0
0 0 K(h) 0 0
0 0 0 K/sin2 θ 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎦ . (7.62)

(Note: this is written in Schwarzschild coordinates for convenience, but to check h
is small, use Kruskals.) This mode is physical, since any gauge degree of freedom
would have to be purely 4D, thus satisfying a massless 4D Lichnerowicz equation,
whereas this mode satisfies a massive 4D Lichnerowicz equation. The effect of the
instability is to cause the horizon to ripple.

For the CHR black string, the presence of the bulk cosmological constant might
be supposed to change the technicalities of this analysis; however, the crucial feature
of the black string instability is that it is a purely 4D (massive) tensor TTF mode –
i.e. it satisfies the RS gauge! If we work out the perturbation equations for the CHR
black string background they have the particularly simple form:

(
(∇(4))2hμν +2R(4)

μλνρhλρ
)
−

[
a4 (

a−2hμν
)′]′

= 0 . (7.63)

This means we can simply take the standard KK instability and substitute the ap-
propriate massive z-dependent eigenfunction: hμν = χμνum(z), so that χμν satisfies
the equation of motion:
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Fig. 7.4 The CHR black string horizon after the instability has set in. The brane is located at the
central cusp

(
Δ (4)

L +m2
)
χμν = 0, (7.64)

where Δ (4)
L is the 4D Schwarzschild Lichnerowicz operator. In other words, we

have the same 4D form for the instability, but a different z-dependence appropri-
ate to the RS background. Figure 7.4 shows the effect of the instability on the black
string horizon, which now ripples with ever-increasing frequency towards the adS
horizon.

It is tempting to link the existence of this instability to the thermodynamic insta-
bility of black holes to Hawking evaporation; however, the timescales have rather
different behaviour. Not only that, but the instability is a dynamical process, and the
amplitude of the instability, A , is essentially arbitrary. The thermal radiation from
a black hole, however, is a quantum process with a well-defined amplitude. To see
the difference, note that for a black hole emitting radiation into O(N2) states

dM
dt

∝
h̄N2

(GNM)2 =
L3

2G5(GNM)2 =
1

GN

(
L

GNM

)2

. (7.65)

For the unstable black string, the mass function on the future horizon is given by an
integral over the KK modes [79]:

M(v) = M0 +
∫ mmax

0

dm
k

M0(2GNM0Ω −1/2)eΩvum(0), (7.66)
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where v is the ingoing Eddington Finkelstein coordinate and Ω the half-life of the
instability at m, which is well approximated by Ω(m) = m2/M−m/2 (see the plots
of Ω vs. μ in [77, 78]). Given this approximation, we can compare the rate of mass
loss of the black hole to that by evaporation, by simply taking dM/dv|v=0:

dM
dv

=
∫ 1

2GN M

0

dm
2k

√
m
2k

(2m2−mM− 1
2 )(2m2−mM)∝ 1

GN

(
L

GN M

)3/2
+ · · · (7.67)

which clearly has a different dependence on L and M
It seems therefore that the holographic principle is not so straightforward to ei-

ther confirm or implement and reinforces the need for an exact solution. A natural
method to try would be to take a similar approach as in cosmology: use the sym-
metries of the spacetime and construct the most general metric. Clearly we have
spherical symmetry around the black hole, but we also have a time translation sym-
metry (assuming a static solution). This introduces an additional degree of freedom
into the system, which can be parametrized as follows [80]:

ds2 = e2φ/
√

3dt2 − e−φ/
√

3
{
α−1/2e2χ(dr2 +dz2)+αdΩ 2

II

}
. (7.68)

The equations of motion then take the form

Δα = −2Λα1/2e2χ−φ/
√

3 +2α1/2e2χ , (7.69)

Δφ +∇φ · ∇α
α

= −2Λα−1/2e2χ−φ/
√

3
√

3
, (7.70)

Δχ+
1
4
(∇φ)2 = −Λα

−1/2e2χ−φ/
√

3

2
− α−1/2e2χ

2
, (7.71)

∂ 2
±α
α

+ 1
2 (∂±φ)2 −2∂±χ

∂±α
α

= 0, (7.72)

where 2∂± = ∂/∂ (r± iz). This is clearly a fairly involved elliptic system, but unlike
the cosmological equations, it is not integrable. What rendered the cosmological
equations integrable was (7.43), of which (7.72) is the counterpart in this set of
equations. The presence of the (∂±φ)2 in (7.72) means that we can no longer use
this to integrate up the other equations. It is possible to classify the separable an-
alytic solutions, [80]; however, none of these have the form expected of a brane
black hole metric. The system can of course be integrated numerically; however, the
typical method appropriate for elliptic systems (relaxation) is apparently extremely
sensitive and has difficulty dealing with radically different scales for the black hole
mass and the adS bulk length scales. The consensus seems to be that nonsingular
solutions representing static braneworld black holes exist for horizon radii of up to
a few adS lengths [81] (see also [82–84]). However, there is no convincing demon-
stration of the existence of nonsingular static astrophysical brane black holes.
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7.6 Approximate Methods and Solutions for Brane Black Holes

Since we lack an exact solution, it is natural to attempt approximate methods to
gain understanding of the system. There are two main approaches: One is to confine
analysis to the brane and to try to find a self-consistent 4D solution. This has the ad-
vantage of only dealing with one variable (the radius), thereby reducing the problem
to a set of ODEs. However, it has the clear disadvantage that it does not take into ac-
count the bulk spacetime, and therefore will not be closed as a system of equations
– inevitably there will be some guesswork or approximation involved with terms
that encode the bulk behaviour. The other main approach is to take a known bulk,
such as the Schwarzschild–adS solution, and to explore what possible branes can
exist. Within this method, the branes can be taken either as probe branes, i.e. branes
which do not gravitationally backreact on the bulk black hole, or as fully gravitating
solutions to the Israel equations, which will therefore have restricted trajectories.

Other approaches not reviewed here include allowing for more general bulk mat-
ter [85, 86], which moves beyond the RS model being considered here. Also, the
extension of brane solutions into the bulk has been explored perturbatively [87],
and numerically [88].

7.6.1 Brane Approach

The brane approach is based on the formalism of Shiromizu, Maeda, and Sasaki
(SMS) [89], who showed how to project the 5D Einstein–Israel equations down to
a 4D brane system. The SMS method uses the fact that the RS braneworld has Z2-
symmetry and writes (7.6) at z = 0+ using the bulk Einstein equations Rab = 4k2gab

to replace the 5D Ricci tensor and the Israel equations (7.9) to replace the extrinsic
curvature:

Kab(0+) = −kγab +4πG5(Tab − 1
3T γab) (7.73)

using (7.23) to define Tab. The only term that cannot be substituted by known quan-
tities is the contraction of the Riemann tensor. Instead, SMS define an (unknown)
Weyl term:

Eab = Cacbdncnd = Racbdncnd − R
12
γab +

1
3
(Rcdγc

aγd
b − γabRnn) = Racbdncnd + k2γab,

(7.74)
which is tracefree.

Using these substitutions, one arrives at a brane “Einstein” equation:

(4)Rab − 1
2

(4)Rγab = 8πGNTab +
(8πGN)2

24k2 Qab +Eab, (7.75)

where the tensor Qab is quadratic in Tab:

Qab = 6TacT
c

b −2T Tab −3T 2
cdγab +T 2γab . (7.76)
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Clearly these equations have an attractive simplicity, particularly if solving for an
empty brane; however, it is important to note that the Weyl term (7.74) is a complete
unknown and depends on the details of the bulk solution.

For the case of the black hole, however, one can use a method similar to that in
brane cosmology [90] to decompose the Weyl term into two independent pieces:

Eμν = U
(
uμuν − 1

3 hμν
)
+Π

(
rμrν + 1

3 hμν
)
, (7.77)

where uμ is a unit time vector, rμ a unit radial vector, and hμν = γμν − uμuν is
here the purely spatial part of the braneworld metric. This renders the vacuum
brane equations (7.75) rather similar to the Einstein equations with a gravitating
perfect fluid: the Tolman Oppenheimer Volkoff (TOV) equations. Of course, U
and Π are complete unknowns and do not necessarily satisfy any conventional en-
ergy conditions; however, this notional similarity is very useful in understanding
the physical system and in fact allows us to derive useful insight into braneworlds
stars [91, 92], such as the fact that the exterior of a collapsing star is not, in fact,
static and Schwarzschild.

The vacuum equations have been solved in many special cases, for example,
Dadhich et al. [93] showed that there was an exact solution with Π = −2U having
the form of a (zero mass) Reissner–Nordstrom metric on the brane. Other analytic
solutions can be found by assuming a given form for the time or radial part of the
metric [94–97]. However, a useful approach to solving these equations is to take
an arbitrary spherically symmetric metric, in which we allow for a general area
functional for the 2-spheres, then apply an equation of state between U and Π [98]:

Π = wU . (7.78)

The Einstein equations reduce to a 2D dynamical system from which it is relatively
easy to extract general information about the system. Obviously, we do not expect
that this unknown tensor will have such a simple equation of state as (7.78); how-
ever, just as in cosmology we approximate the energy momentum of the universe
by various eras with fixed equations of state, it seems reasonable to approximate the
near and far horizon behaviours by a fixed w.

At large r, we might expect the linearized solution (7.35) on the brane, which
corresponds to w =−5/4. Closer to the horizon, however, it is possible that w could
become very large and negative. There is in fact an exact solution for w→−∞which
displays features which are generic to solutions with w < −2 (the tidal Reissner–
Nordstrom solution):

ds2 =

[
(1+ ε)

√
1− 2GM

R
− ε

]2

dt2 − dR2

1− 2GM
R

−R2dΩ 2
II . (7.79)

This solution has a null singularity at r = r1, the relic of an horizon, but also note
that it actually has a “wormhole”, i.e. the area of 2-spheres surrounding the origin
actually has a minimum value outside the horizon (for r0 > r1) and is increasing
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Fig. 7.5 A sketch of the
constant time surfaces of the
metric (7.79)

as the horizon is approached. A sketch of a constant time surface is shown in
Fig. 7.5. It is tempting to conjecture that in fact any such static solution is singu-
lar, but while suggestive, these general arguments are not a proof, and investigations
to determine the nature of the braneworld black hole horizon have been inconclusive
[99, 100].

7.6.2 Bulk Approach

The other main approach which can yield insight into brane solutions is to simplify
the problem by taking a known bulk and exploring the possibilities for a brane so-
lution with internal spherical symmetry. With this approach the bulk is now known
(although rather rigidly fixed) and therefore the system has no “unknowns”. The
first work in this area took the brane to be non-gravitating – a probe brane – and
determined the general trajectories and dynamics of the brane [101–104]. Although
this work is not gravitationally self-consistent, it is important in particular because
it gives insight into highly time-dependent and complicated processes and is to date
the only available study of the process of a black hole leaving the brane. This has
relevance for LHC black holes, as the main alternative to decay via Hawking evap-
oration is black hole recoil into the bulk, although the holographic point of view
would argue these are indistinguishable [105].

In these lectures, we are mostly concerned with the gravitational properties of
brane black holes and so want to keep the brane at finite tension and have a con-
sistent backreaction. This is a far more complicated and restrictive problem; how-
ever it is possible to obtain a linearized metric for a black hole that has left the
brane [106]. This has the form of a shock wave of spherically symmetric outgoing
radiation on the brane. For a full nonlinear analysis, we have to look for spheri-
cally symmetric branes embedded in a 5D Schwarzschild–adS spacetime using the
Israel formalism. This leads to some interesting solutions, although the price to be
paid is that the brane is no longer empty: we require energy momentum on the
brane to source the gravitational field. This presentation is based on [107], but see
also [108, 109].

The basic idea is to use the Israel equations with a bulk metric of the general
Schwarzschild–adS form. The brane is spherically symmetric, with additional mat-
ter content corresponding to a homogeneous and isotropic fluid, in other words a
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braneworld TOV system. Note however that here there is an actual energy momen-
tum source on the brane, in addition to the Weyl term (7.74) which is now specified
from the brane embedding in the bulk metric:

ds2 = U(r)dτ2 − 1
U(r)

dr2 − r2(dχ2 + sin2 χ dΩ 2
II
) , (7.80)

For the brane trajectory, consistent with the SO(3) symmetry, we take a general
axisymmetric slice χ(r). Finally, for the energy momentum tensor of the brane we
take a general isotropic fluid source:

Tμν = [E(r)− T(r)] uμuν + T(r)hμν . (7.81)

It turns out to be convenient to write the Israel equations in terms of α = cosχ ,

Urα ′ +α =
8πG5Er

6

√
[r2Uα ′2 +1−α2], (7.82)

r2Uα ′′ +
r2U ′

2
α ′ +2rUα ′ +

r2Uα ′2

1−α2

(
rUα ′ +α

)

=
8πG5Er
6(1−α2)

[
r2Uα ′2 +1−α2]3/2

, (7.83)

together with a conservation equation which determines T .
These equations can be completely integrated in terms of a modified radial vari-

able

r̃ =
∫

dr

r
√

U
(7.84)

giving

cosχ = aer̃ +be−r̃, (7.85)

E(r) =
6

8πG5r
√

1−4ab

[√
U

(
aer̃ −be−r̃)+aer̃ +be−r̃

]
, (7.86)

T(r) =
2
3
E(r)+

U ′

8πG5
√

(1−4ab)U

(
aer̃ −be−r̃) . (7.87)

Finally the induced metric on the brane is

ds2 = Udτ2 − (1−4ab)dr2

U(1−α2)
− r2(1−α2)dΩ 2 . (7.88)

So far, this is a completely general (implicit) exact solution which depends on
an integral of the bulk Newtonian potential U(r). Although this is an exact solution,
the actual properties of the brane depend on the specifics of the relation between r̃
and r. Once this is determined, we have a solution describing a static, spherically
symmetric distribution of an isotropic perfect fluid on the brane, i.e. a solution to the
brane-TOV system, and therefore a candidate for a brane “star”. The extent to which
this is a physically realistic solution will depend on the energy and pressure profiles.
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Note that the profiles E(r) and T(r) represent the full brane energy momentum and
include the background brane tension. The relevant physical energy and pressure
will be defined by

ρ = E − E∞, p = E∞− T , (7.89)

where E∞ is an appropriate background brane energy, which has to be identified on
a case-by-case basis.

For a 5D adS bulk, U(r) = 1+ k2r2, and the brane satisfies

r cosχ(r) = A
(√

U −1
)

+B
(√

U +1
)

, (7.90)

E =
6k2(A−B)

8πG5
√

1−4k2AB
, (7.91)

T(r) = E − 2k2(A+B)2

8πG5

√
(1−4k2AB)U

, (7.92)

where A = a/k and B = b/k in terms of the parameters in (7.85). These brane tra-
jectories are conic sections classified by |A + B|. For |A + B| = k−1, the brane is
a paraboloid with critical RS tension ERS (7.12). For |A + B| > (<)k−1, the brane
is an ellipsoid (hyperboloid) with super- (sub-) critical tension. A = −B is a spe-
cial case, corresponding to a sub-critical Karch–Randall brane and is a straight line.
Figure 7.6 shows sample brane configurations for various values of the integration
parameters A and B.

Notice that the energy density is constant and requires A > B to be positive.
The tension on the other hand is clearly not constant unless A = −B. For the gen-
eral brane we have a gravitating source composed purely of pressure! These branes
clearly do not asymptote exact Randall–Sundrum or Karch–Randall branes. How-
ever, if |kA| and |kB| are large enough, the metric can be flat (or asymptotically
(a)dS) over many orders of magnitude before the effect of the pressure kicks in.

It is also interesting also to look at a pure Schwarzschild bulk, U(r) = 1−μ/r2,
for which

cosχ = r
[
A

(√
U −1

)
+B

(√
U +1

)]
, (7.93)

E(r) =
6

8πG5
√

1+4μAB

[
(B−A)(1+U)+2(B+A)

√
U

]
, (7.94)

T(r) =
2

8πG5
√

1+4μAB

[
(B−A)(3+U)+(B+A)(1+3U)/

√
U

]
, (7.95)

where now A = −b/
√μ and B = a/

√μ in terms of the general solution (7.85).
Note that by construction, these trajectories are strictly only valid outside the event
horizon of the black hole, since the definition of the r̃ coordinate involves a branch
cut there. In contrast to the adS case, E is not constant for these branes. For our
solution to correspond to a brane star or black hole, we require E to be positive, and
to increase towards the centre of the brane.
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Fig. 7.6 A selection of branes
of varying coefficient A, for
the case B = 0,k = 1 in a 5D
anti-de Sitter bulk
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Looking at the large r behaviour of (7.93), we see that the brane can only reach
large r if B = 0, otherwise the brane is either a bubble (enclosing the horizon or not,
depending on A and B) or an arc touching the horizon. In general, the brane touches
the horizon at a tangent, and the pressure diverges; however, for one special case
A = −B, the brane slices through the horizon passing on to the singularity. Some
sample closed trajectories are shown in Fig. 7.7.

The most physically interesting Schwarzschild trajectories are those which tend
to infinity, for which B = 0, see Fig. 7.8. For these branes E∞ = 0, and thus

ρ = E(r) =
−6A
8πG5

(√
U −1

)2
, p = −T = −ρ

3
(
√

U −1)√
U

. (7.96)

For A < 0, these branes have positive energy and pressure, uniformly decreasing
as 1/r4 and 1/r6, respectively. If |A| > 1/

√μ , the brane never touches the horizon
and the pressure remains everywhere finite. Thus these correspond to asymptoti-
cally empty branes with positive mass sources. Plotting the energy and pressure
for the brane shows that this does indeed correspond to a localized matter source,
with the peak energy density dependent on the minimal distance from the horizon
(see Fig. 7.9). The central energy and pressure can be readily calculated from this
minimal radius, rm = μ |A|/2+1/2|A|:



7 Braneworld Black Holes 283

a b

–0.2

–0.2

–0.4

0.2 0.4 0.6 0.8

0.2

0.4
A 0.9, 0.6

A 0.6, 0.9

A 1

A –1,

–6,

1

x

y
B

B

B

B

–0.4 –0.2

–0.2

–0.4

0.2 0.4 0.6 0.8

0.2

0.4 A 20, 1

A 0.4,
B 1.6

A 0.4, 1

x

y
B

B

Fig. 7.7 A selection of branes (solid lines) for the case (a) AB > 0 and (b) AB < 0 in a 5D
Schwarzschild bulk of fixed mass parameter μ = 0.03. The dashed line denotes the corresponding
horizon radius

Fig. 7.8 A selection of branes
for the case AB = 0 in a 5D
Schwarzschild bulk of fixed
mass parameter μ = 0.03. The
case A = 0,B = 1 is shown
together with a set of branes
with B = 0 and variable A.
The dashed line denotes again
the event horizon
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Fig. 7.9 The energy (dark line) and pressure (grey line) of brane stars with a pure Schwarzschild
bulk as a function of the brane radial coordinate r̂. The black hole mass is fixed at μ = 1, and the
distance of closest approach to the horizon increases across the plots

ρc =
24|A|

8πG5(1+μA2)2 , pc =
16|A|

8πG5(μA2 −1)(1+μA2)2 , (7.97)

which shows that the central pressure diverges as μA2 → 1. This is analogous to
the divergence of central pressure in the 4D TOV system, which is indicative of the
existence of a Chandrasekhar limit for the mass of the star.

In these spacetimes, there is no actual black hole in the bulk, since it is the bulk
to the right of the brane that is retained. Rather, it is the combination of the bulk
Weyl curvature and the brane bending which produces the fully coupled gravita-
tional solution. As the brane moves away from the horizon, the brane matter source
spreads out, but the total mass changes very little, and is determined by the bulk
black hole mass. The limit on mass is therefore not a true Chandrasekhar limit, but
more a statement about an upper bound on the concentration of matter. The real rea-
son there is no absolute upper bound is because, unlike the RS system with an adS
bulk, gravity on the braneworld is not localized, nor is it four dimensional. Comput-
ing the induced metric on the brane in fact shows that it is the projection of the 5D
Schwarzschild metric on the brane.

7.6.2.1 Braneworld Stars: A Schwarzschild–adS Bulk

For the true braneworld star, the appropriate bulk is expected to be Sch–adS bulk:
U(r) = 1+ k2r2 − μ

r2 . Here r̃ has an exact analytic expression:

r̃(r) =
1

krh
EllipticF

[
Arcsin

(
r

r−

)
,

r2
−

r2
h

]
, (7.98)

with rh the black hole horizon, (7.50), and r− is defined as

r2
− =

−1−
√

1+4k2μ
2k2 . (7.99)

Since the Randall–Sundrum model is a brane in adS spacetime, we expect that any
consistent brane trajectories in Sch–adS will potentially correspond to brane stars or
black holes. It is worth stressing that these solutions will not just be brane solutions,
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but full brane and bulk solutions, since the full Israel equations for the brane have
been solved in a known bulk background.

From (7.86) the background brane tension is defined as

E∞ =
6k(a−b)

8πG5
√

1−4ab
. (7.100)

For large enough r, the geometry is dominated by the cosmological constant, there-
fore the pure adS solutions will be good approximations to any trajectories for large
r. Also, if μk2 � 1, i.e. if the black hole is much smaller than the adS scale, we
expect that in the vicinity of the horizon the Schwarzschild solutions will be good
approximations for the brane; therefore for small-mass black holes, we might expect
brane trajectories to be well approximated by some combination of Schwarzschild
and adS branes. Because the r̃-coordinate has been zeroed at infinity (for easy com-
parison with the pure adS limit) the range of r̃ in Sch–adS is finite and decreases
sharply with increasing μ . This suggests that trajectories in large-mass Sch–adS
black hole spacetimes are more finely tuned, and possibly more restricted than in
small-mass black hole spacetimes.

Like adS spacetime, the Sch–adS trajectories can be classified according to
whether they asymptote the adS boundary at nonzero χ , at χ = 0, or do not reach
the boundary at all, i.e. are closed bubbles. These correspond to sub-critical, critical,
or super-critical branes (a+b < 1, a+b = 1, and a+b > 1), respectively. A sample
of brane trajectories is shown in Fig. 7.10.

The super-critical branes are qualitatively similar to the pure Schwarzschild case;
however, it is interesting to note that in each case there exists a purely empty spher-
ical brane, equidistant from the horizon. This corresponds to the Einstein static uni-
verse [52], which from the brane perspective is a closed universe stabilized by a
combination of the cosmological constant (the brane is super-critical) and the CFT
dark radiation term. Using the holographic intuition, we might expect that by dis-
placing this universe slightly we could mock up the start of gravitational collapse;
however, a quick computation shows that displacing the brane relative to the black
hole slightly sets up an energy deficit on the part of the brane closer to the black
hole!

In the case of critical branes, a + b = 1, which means that the brane trajecto-
ries asymptote the adS boundary at exactly χ = 0. The branes are thus open and
may or may not touch the black hole horizon depending on the exact values of the
parameters a and b. If

a−b < | tanh r̃+/2| , (7.101)

the trajectory remains away from the horizon, otherwise it will touch the horizon
and have a pressure singularity. A sample of critical trajectories in a Sch–adS back-
ground is shown in Fig. 7.11(left plot).

For branes that avoid the horizon the energy density is positive, peaking at the
centre, and dropping rapidly to the background value, undershooting it very slightly
to form an underdense region at very large r. The pressure also reaches its maxi-
mum value at the centre, but is uniformly decreasing with r, at a much slower rate,
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Fig. 7.10 A mixture of
brane trajectories in a 5D
Schwarzschild-anti-de Sitter
background of fixed parame-
ters k = 1 and μ = 0.03. Note
how these are deformed from
those of Fig. 7.6 by the black
hole horizon
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consistent with the pressure excess observed for the pure adS branes. Apart from
this pressure excess, the other main difference with pure Schwarzschild trajectories
is that the brane matter can no longer universally satisfy the dominant energy condi-
tion (DEC) (ρ ≥ |p|). In pure Schwarzschild, the DEC is satisfied except for branes
which skirt extremely close to the horizon, where the local Weyl curvature causes
the pressure to diverge. This phenomenon is also observed for the Sch–adS branes
skimming close to the horizon; however, as we increase b the central energy dom-
inates the pressure for only a finite range of b before once again dropping below
the pressure. This is because the further we move away from the horizon the adS
curvature becomes more important, and for pure adS branes, the effect of the adS
curvature is to induce a pressure excess. In Fig. 7.11(right plots), the energy density
and pressure of the matter on the brane are shown for a sequence of critical branes
in a Sch–adS background displaced by an increasing distance from the horizon.

Sub-critical branes are largely similar to critical branes, and correspond to open
trajectories that asymptote the adS boundary, although at nonzero χ in this case.
The same bound as before, i.e. whether |cosχ| � |aer̃h +be−r̃h | ≤ 1, will determine
whether the brane terminates on the event horizon or remains on the RHS of it. The
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Fig. 7.11 (a) A sample of critical brane trajectories with a + b = 1 in a 5D Schwarzschild-anti-
de Sitter background of fixed parameters k = 1 and μ = 0.03. The dashed line denotes again the
horizon. (b) A set of plots of the brane energy (black line) and pressure (grey line) for a sequence
of critical branes moving away from the horizon

energy density and pressure profiles in this case are again similar to the ones found
for critical branes. Once again, for a large family of parameters a and b, solutions
with a positive energy excess at the centre of the brane may be easily found.

One special sub-critical trajectory found in the pure adS case was the Karch–
Randall trajectory, a+b = 0. We can extend this to Sch–adS obtaining

cosχ = 2asinh r̃. (7.102)

However, since a > 0 for a positive energy trajectory, this has (cosχ)′ > 0, and
hence the energy density is always increasing with r. Thus, whether or not these tra-
jectories terminate on the horizon, they always correspond to energy deficits on the
brane, and hence negative mass sources from the point of view of a brane observer.

To sum up: we can get static solutions to the brane-TOV equations, and hence
static brane stars. Unfortunately, the restricted form of the bulk leads to unphysical
asymptotic behaviour away from the star in the form of a pressure excess. One
possible way of removing this would be to perturb the bulk slightly at large r to
remove this excess. However, another interesting route to explore is to make the
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trajectory time dependent. In [91, 92] it was argued that the spacetime surrounding
a collapsing brane star would be time dependent even though it was vacuum. In fact,
the RS trajectory is time dependent when written in global adS coordinates, which
of course are the coordinates used for the Schwarzschild–adS metric:√

1+ k2r2 coskt − kr cosχ = e−kz = 1 . (7.103)

The RS wall is oscillatory because the spherical coordinates are the universal cover-
ing space of adS, and so the “wall” is actually an infinite family of walls, each in the
local patch covered by the horospherical coordinates. Since r = 0 is a geodesic of
the spherical adS spacetime, the image of r = 0 in the Randall–Sundrum spacetime,
which is a hyperbola, will be a geodesic in the RS spacetime. Therefore, if we put
a black hole at r = 0, it should look like a particle in the RS spacetime, at least to a
first approximation.

We can generalize the brane trajectory to χ(r, t), compute the corresponding
time-dependent versions of (7.82) and (7.83), and then find the energy momen-
tum source required on the brane. The idea is that a time-dependent brane solution
would describe a black hole forming from the collapse of radiation, and its subse-
quent evaporation; thus it is not clear whether we should expect a pure brane energy
momentum solution; rather, a solution corresponding to the collapse of matter on
the brane is perhaps more physically realistic. The energy momentum of a surface
slicing the Sch–adS spacetime is given by the Israel junction conditions as

Tμν =
2

8πG5

(
Kμν −Khμν

)
+

6k
8πG5

hμν . (7.104)

Clearly, since the trajectory is time dependent, the energy momentum will also be
time dependent; however, since the largest effect of the bulk black hole will be
represented by the t = 0 slice of the braneworld – the point of closest proximity –
we evaluate the energy momentum at t = 0. For a pure RS trajectory, the black hole
causes the energy of the brane to decrease from its critical value, whereas both the
radial tension and azimuthal tension increase; thus the brane matter violates all the
energy conditions! However, this was not unexpected as the RS trajectory was not
modified, and the main feature of the static brane solutions was that they responded
to the bulk black hole by bending. Indeed, in a definitive brane gravity paper [50],
Garriga and Tanaka showed that a crucial part of obtaining 4D Einstein gravity (i.e.
with the correct tensor structure) was what could be interpreted as a brane bending
term. As shown in Sect. 7.3, the effect of matter on the brane is to “shift” the brane
with respect to the acceleration horizon in the bulk (7.29). Clearly then, if a black
hole forms on the brane, we would expect the brane to respond to this matter by
bending.

A shift in the position of the brane corresponds to kz → 1+kδ z, and trying a test
function

cosχ(t,r) � 1
r

(√
1+ r2 cosτ− 1

1− q
rp

)
(7.105)
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Fig. 7.12 A selection of plots of brane energy momentum with brane bending included for a range
of amplitudes and powers of r. The brane energy is shown in units where ERS = 3 and the radial
brane distance in units of L. The solid black line is the energy, the dashed line the radial pressure,
and the gray line the angular pressures

gives the behaviour shown in Fig. 7.12 for a range of p and q. (The brane bending
of 1/|x| corresponds approximately to p = 1/2.)

The brane energy momentum in Fig. 7.12 satisfies the WEC, however, not the
DEC. If the brane is bent instead towards the black hole the brane WEC is violated.
The excess of angular pressure is somewhat similar to the pressure excesses in the
static brane trajectory; however, unlike the static trajectories, here the black hole
actually is in the bulk, hence these are true candidates for black hole recoil into the
bulk.

7.6.2.2 The Interaction of Black Holes and Branes

The main motivating factors for obtaining a time-dependent braneworld black hole
are to gain insight into the backreaction of Hawking radiation on a quantum cor-
rected 4D black hole and to understand the process of black hole recoil from a
braneworld. Presumably the time-dependent process will be some perturbed version
of a time-dependent brane trajectory in 5D Sch–adS spacetime. By allowing the
brane to intersect the bulk black hole horizon, this would appear to describe black
hole formation and evaporation via transport of a bulk black hole to the brane, and
subsequent departure back into the bulk. When the brane hits the black hole, we
might expect some part of it will be captured by the black hole, and will therefore
remain behind the event horizon even when the black hole has left the brane, effec-
tively having been chopped off from the rest of the brane. This feature is seen in
the probe brane calculations of [103, 104], and we expect this to hold in the case of
a fully gravitating brane. In support of this, we can appeal to the case of a cosmic
string interacting with a black hole, where early work indicated that strings would
be captured [110], and via self-intersection would leave some part behind in the
black hole. Gravitational calculations of the fully coupled string/black hole system
show explicitly how this ties in with the thermodynamic process of string capture
and black hole entropy [111, 112].

The basic idea is that once part of a brane has fallen into the event horizon of
a black hole, it can no longer leave. Thus, if the brane has enough kinetic energy
to subsequently pull away from the black hole, the price it must pay is to leave
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BULK BULK

Fig. 7.13 An illustration of brane capture by a black hole. On the left, the black hole is on the brane,
with the brane moving upwards. On the right, the brane has left the black hole by self-intersecting
and cutting off a bubble which falls into the black hole

behind the part that has already been captured, see Fig. 7.13 [103, 104]. However,
RS braneworlds are not probe branes, but are strongly gravitating objects, and there-
fore any dynamic process must also be gravitationally consistent. From the gravi-
tational point of view, when the black hole captures part of the brane and excises
it from the whole, the black hole must increase in mass. This interplay is seen par-
ticularly clearly in the related case of the cosmic string [111, 112], where a cosmic
string piercing a black hole alters the thermodynamic relations between mass, en-
tropy, and temperature. In that case, the (static) results are entirely consistent with
the black hole having captured a length 4GNM of cosmic string, thus increasing its
mass. Just as in the cosmic string case, the capture of the codimension 1 RS brane
by the black hole will turn out to be important in establishing the thermodynamic
viability of the black hole recoil process.

At a first pass, it seems that in fact black hole recoil cannot occur in RS
braneworlds due to a simple entropy argument [113]. In five dimensions, entropy
is proportional to M3/2; hence two black holes of mass M/2 have less entropy than
a single black hole of mass M. However, this argument is both incorrect in the evalu-
ation of the entropy and misses additional contributory factors such as brane bending
and brane capture by the black hole.

To get a better estimate, first note that entropy is proportional to horizon area/
volume, which for Sch–adS is not simply related to the mass, but also to the adS
scale:

S ∝ 2π2r3
h =

π2
√

2k3

(√
1+

32G5Mk2

3π
−1

)3/2

. (7.106)

Note that if GNM ≥ 3.35L, then the entropy of two black holes of mass M/2 will
in fact be greater than that of a single black hole of mass M. Therefore, at least
from this rather approximate entropic argument, black hole recoil would seem to be
problematic only for small black holes. On the other hand, in any dynamic process,
we must take into account the capture of part of the brane by the black hole. Consider
the idealized situation where we have a black hole intersecting the brane along its
equator; in this case, a volume of 4πr3

h/3 of brane has been captured by the black
hole, with a corresponding mass of
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δM =
6k

8πG5

4
3
πr3

h =
1

2
√

2GN

[√
1+4μk2 −1

]3/2
. (7.107)

Adding this mass to the recoiled black holes results in an order of magnitude im-
provement to the bound on M coming from the entropy: for GNM ≥ 0.35L, the
entropy of the recoiled black holes becomes greater than that of the black hole on
the brane.

Finally, however, the most crucial factor is the brane bending. For a mass on the
brane, the brane bends away from the acceleration horizon, and (as we have seen)
the brane tends to bend away from the black hole. This effect will be most marked
for the smallest black holes. We therefore have to correct the entropy argument to
allow for the fact that more than half of the black hole horizon is sticking out into the
bulk (see Fig. 7.13). Ignoring the effect of the captured brane increasing the mass, a
quick calculation shows that the effective mass of the intermediate black hole stuck
on the brane is

Mint =
2πM

2χ0 − sin2χ0
, (7.108)

where χ0 > π/2 is the minimal angle at which the brane touches the event horizon
(assuming the black hole approaches from χ = π). For χ0 > 17π/30, a rather modest
amount of brane bending, the entropy of the recoiled black holes is always greater.

It is important to note that these arguments use the standard entropy of the iso-
lated Sch–adS black hole. In other words, they assume a static solution with an event
horizon at rh. Clearly in the time-dependent spacetime there is some question about
whether this approximation is valid, and entropy arguments should be used with
caution, nonetheless, for small black holes, where we might expect them to be more
reliable, taking into account brane bending and fragmentation shows that it is by no
means entropically preferred for a black hole to stick to the brane.

7.7 Outlook

As we have seen, the problem of braneworld black hole solutions is rather com-
plex, and extremely interesting. The holographic principle puts forward the tanta-
lizing prospect that if we can find a classical brane black hole solution (be it time
dependent or static) then this gives us invaluable information about the quantum-
corrected black hole. The failure to find a classical solution so far can therefore be
reinterpreted as the difficulty of consistently quantizing gravity. Yet the picture is
not quite so clear. There have been several attempts to solve the brane black hole
system numerically [82–84], but as yet no unequivocal result. As we have seen,
finding classical solutions directly is extremely difficult, and the only progress that
has been made is partial, either by ignoring the bulk or by relaxing the restrictions
on the brane.

One interesting possibility, discussed in [114], is that the holographic principle
is in fact not applicable to the RS model and that the lack of an exact solution
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is unrelated to any problem of quantum gravity. Fitzpatrick, Randall, and Wiseman
(FRW) suggest that it is not appropriate to use the adS/CFT conjecture, as this refers
to a quantum field theory at strong coupling, and the relation between the classical
bulk solution and the quantum-corrected brane solution requires the relation (7.55)
where the classical effect is related to the full N2 degrees of freedom of the field
theory. Since the field theory is strongly coupled, it is not obvious that we will
indeed have access to all the N2 states in all cases. For example, we do not see
quarks or gluons outside the nucleus, so why should we expect to access the full
range of states far away from a black hole?

Without an exact solution, there is no way of exploring which of these insights,
the holographic picture of EFK discussed in Sect. 7.4, or the gluon analogy of
FRW, is correct. FRW are of the opinion that there does exist a nonsingular, static
braneworld black hole solution and proposed the CHR black string as a counterex-
ample to the holographic conjecture. The main problem with this solution is that
to render it stable a second brane is required in the bulk. This corresponds to an
infrared cut-off in the CFT, and it is by no means clear how this additional compli-
cation affects the holographic argument.

There is however another option for exploring the physics of braneworld black
holes, and that is to move to the Karch–Randall set-up [41]. The KR brane is slightly
detuned from the critical RS value, and is sub-critical, with an effective negative
cosmological constant residing on the brane. KR branes are thus adS slicings of
adS. From the holographic point of view, this complicates the picture, as we are no
longer in the near horizon limit of a stack of D3-branes; however, the KR brane
can possibly be related to a defect CFT dual to the intersection of a probe D5-brane
with a stack of D3-branes [115, 116]. The advantage of considering this slightly
detuned situation is that black holes in adS can be thermodynamically stable [117],
and therefore the backreaction due to Hawking radiation can, in principle, be com-
puted. On the other hand, the adS black string in adS becomes stable once the mass
is sufficiently high [118], which has been argued to be dual to the Hawking–Page
transition [119]. Thus, for large–mass black holes on the KR brane, we can perform
a direct comparison between the strong coupling holographic backreaction and the
weak coupling Hawking radiation backreaction.

Such a comparison was made in [120] using Page’s heat kernel method [40] for
approximating the radiation back reaction. The physical set-up is that we have two
KR branes stretching through the bulk, each with positive tension, and each cutting
off the boundary of adS, hence each providing a UV cut-off CFT. The black string
stretches between the two branes, and for large enough mass is stable (see Fig. 7.14):

ds2 =
L2

cos2 θ

⎡
⎣(

1+ k2
4r2 − 2GNM

r

)
dt2 − dr2(

1+ k2
4r2 − 2GN M

r

) − r2dΩ 2
II −dθ 2

⎤
⎦ ,

(7.109)

where k4 = k cosθ0, with ±θ0 being the location of the KR branes, is the 4D adS
curvature scale.
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Fig. 7.14 A sketch of the KR
black string. The black circle
is the adS boundary, which is
excised from the braneworld
spacetime. The string goes
through the adS bulk between
the two KR branes. Because
the string has finite proper
length relative to its mass, it
can be stable for sufficiently
large mass

Restricting ourselves to a single brane, the geometry is that of 4D Sch–adS, and
we can perform a standard weak coupling computation of the energy momentum
tensor of the Hawking radiation. Figure 7.15 shows the energy and pressure of the
thermal bath produced by the black hole (see [120] for details). Notice how at large
r the energy and pressures asymptote the form of a cosmological constant.

On the other hand, we have a full brane+bulk classical solution, and we can
directly compute the effective stress tensor on the brane. It is clear before starting,
however, that this will not have the form of Fig. 7.15, as these varying energies
and stresses will backreact on the spacetime to give a modification of the Sch–
adS solution, whereas the classical solution is pure Sch–adS. On the other hand,
although this is the classical brane solution, that does not mean that there is no
backreaction on the brane energy momentum. In fact, the correction to the brane
energy momentum is interpreted via the conventional 4D Einstein equation. From
the brane point of view, we are unaware of the extra dimension, and therefore we
interpret any deviation from the standard Einstein equation as additional energy
momentum. Thus, while our KR brane energy momentum must have the form of

Fig. 7.15 The backreacted
energy momentum tensor at
weak coupling. The solid
black line is the energy, the
dashed line the radial tension,
and the dotted line the angular
tension
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a cosmological constant, it is possible that this is renormalized from the expected
bare value.

To see how this works, let the tension of the KR brane be

E =
6k

8πG5
+λ =

6k sinθ0

8πG5
, (7.110)

where λ < 0 is the bare tension on the brane. On the other hand, the actual 4D
cosmological constant is given by

Λ4 = −3k2
4 = 8πG4λeff . (7.111)

Note that in this case, the 4D gravitational constant is not labelled as GN , since the
relation between the brane and bulk gravitational constant is dependent on the brane
tension, not the background adS curvature [121–123], and is altered from the critical
RS relation:

G4 =
4πG5

3
EG5 . (7.112)

From the definition of k4 and (7.110) and (7.112), the value of the bare tension is

λ =
3

4πG4

(
k2 − k2

4 − k
√

k2 − k2
4

)
. (7.113)

Therefore, since the “expected” value of the cosmological constant is 8πG4λ , we
can compute the correction to the brane energy momentum as

〈T μ
ν 〉 =

8πG4λ −3k2
4

8πG4
δ μν =

3(2k2 − k2
4 −2k

√
k2 − k2

4)

8πG5

√
k2 − k2

4

δ μν . (7.114)

This is the precise (classical) braneworld result. We can obtain the holographic
renormalization result [124] by taking the limit as the brane approaches the bound-
ary or by approaching the critical RS limit λ → 0. As k4 → 0, we get

〈T μ
ν 〉 =

3k4
4

32πG5
(7.115)

which agrees with the strong coupling holographic result [120], up to the expected
factor of two which arises from the braneworld set-up having two copies of the bulk,
one on each side of the brane.

It is intriguing that the black hole apparently does not radiate in the strong cou-
pling picture. This is a direct consequence of the fact that the bulk spacetime is
foliated by conformal copies of the Schwarzschild–adS black hole. This “transla-
tion invariance” means that the classical KK graviton modes are not excited in the
background solution, and geometrically the only possibility is renormalization of
the cosmological constant. It is possible that the black string solution is not the cor-
rect black hole metric candidate; however, one might expect that for brane black
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holes with rh > L, there is a unique stable regular black hole geometry, which this
solution is.

Thus, the KR black string provides a counterexample to the expectation that a
classical braneworld black hole corresponds to a quantum-corrected 4D black hole.
There are of course many caveats to this claim. Clearly the KR brane is not the
near horizon limit of a stack of pure D3-branes, and therefore we do not expect the
CFT to be a simple SYM. However, the fact that the renormalization of the stress
tensor is proportional to N2, yet vanishes in the critical RS limit, is supportive of
the arguments of [114]. Obviously this debate is far from over! (See [125–128] for
some recent work.)

Hopefully these lectures have given an insight into the complex and fascinating
topic of braneworld black holes. However as the field develops over the next few
years, there are sufficient puzzles and unanswered questions to ensure that it will
continue to be an active and exciting area.

Acknowledgments I would like to thank Elefteris Papantonopoulos for inviting me to such a
lovely school, and also my collaborators throughout the years but in particular Simon Creek, Yiota
Kanti, Bina Mistry, Simon Ross, Richard Whisker, and Robin Zegers. This work was partially
supported by the EU FP6 Marie Curie Research and Training Network “UniverseNet” (MRTN-
CT-2006-035863).

References

1. V. A. Rubakov and M. E. Shaposhnikov, Phys. Lett. B 125, 139 (1983). 259
2. V. A. Rubakov and M. E. Shaposhnikov, Phys. Lett. B 125, 136 (1983).
3. Akama, K.: Lect. Notes Phys. 176, 267 (1982) [arXiv:hep-th/0001113]. 259
4. J. Dai, R. G. Leigh and J. Polchinski, Mod. Phys. Lett. A 4, 2073 (1989). 260, 270
5. J. Polchinski, Phys. Rev. Lett. 75, 4724 (1995) [arXiv:hep-th/9510017]. 260, 270
6. P. Horava and E. Witten, Nucl. Phys. B 475, 94 (1996) [arXiv:hep-th/9603142]. 260
7. A. Lukas, B. A. Ovrut, K. S. Stelle and D. Waldram, Phys. Rev. D 59, 086001 (1999)

[arXiv:hep-th/9803235]. 260
8. N. Arkani-Hamed, S. Dimopoulos and G. Dvali, Phys. Lett. B429, 263 (1998) [hep-

ph/9803315]. 260, 261
9. N. Arkani-Hamed, S. Dimopoulos and G. Dvali, Phys. Rev. D 59, 086004 (1999) [hep-

ph/9807344].
10. I. Antoniadis, N. Arkani-Hamed, S. Dimopoulos and G. Dvali, Phys. Lett. B 436, 257 (1998)

[hep-ph/9804398]. 260, 261
11. L. Randall and R. Sundrum, Phys. Rev. Lett. 83, 3370 (1999) [arXiv:hep-ph/9905221]. 260, 265
12. L. Randall and R. Sundrum, Phys. Rev. Lett. 83, 4690 (1999) [arXiv:hep-th/9906064]. 260
13. J. M. Maldacena, Adv. Theor. Math. Phys. 2, 231 (1998). 260, 270
14. J. M. Maldacena, Int. J. Theor. Phys. 38, 1113 (1999) [arXiv:hep-th/9711200]. 260, 270
15. G. W. Gibbons and D. L. Wiltshire, Ann. Phys. 167, 201 (1986). 260
16. G. W. Gibbons and D. L. Wiltshire, Ann. Phys. 176, 393 (1987) (Erratum).
17. D. Garfinkle, G. T. Horowitz and A. Strominger, Phys. Rev. D 43, 3140 (1991).
18. D. Garfinkle, G. T. Horowitz and A. Strominger, Phys. Rev. D 45, 3888 (1992) (Erratum). 260
19. N. I. Shakura and R. A. Sunyaev, Astron. Astrophys. 24, 337 (1973). 260
20. D. Lynden-Bell, Nature 223, 690 (1969). 260
21. J. Kormendy and D. Richstone, Ann. Rev. Astron. Astrophys. 33, 581 (1995). 260



296 R. Gregory

22. R. Schodel et al., Nature 419, 694 (2002). 260
23. A. C. Fabian, K. Iwasawa, C. S. Reynolds and A. J. Young, Publ. Astron. Soc. Pac. 112,

1145 (2000) [arXiv:astro-ph/0004366]. 260
24. M. Gierlinski and C. Done, Mon. Not. Roy. Astron. Soc. 347, 885 (2004) [arXiv:astro-

ph/0307333]. 260
25. E. G. Gimon and P. Horava, “Astrophysical violations of the Kerr bound as a possible sig-

nature of string theory,” arXiv:0706.2873 [hep-th]. 260
26. S. B. Giddings and S. D. Thomas, Phys. Rev. D 65, 056010 (2002) [arXiv:hep-ph/0106219]. 261
27. S. Dimopoulos and G. L. Landsberg, Phys. Rev. Lett. 87, 161602 (2001) [arXiv:hep-

ph/0106295]. 261
28. C. M. Harris, P. Richardson and B. R. Webber, JHEP 0308, 033 (2003) [arXiv:hep-

ph/0307305]. 261
29. C. M. Harris, M. J. Palmer, M. A. Parker, P. Richardson, A. Sabetfakhri and B. R. Webber,

JHEP 0505, 053 (2005) [arXiv:hep-ph/0411022].
30. G. L. Landsberg, J. Phys. G 32, R337 (2006) [arXiv:hep-ph/0607297].
31. M. Cavaglia, R. Godang, L. Cremaldi and D. Summers, Comput. Phys. Commun. 177, 506

(2007) [arXiv:hep-ph/0609001]. 261
32. P. Kanti, Black holes at the LHC, arXiv:0802.2218 [hep-th]. 261
33. S. S. Gubser, Phys. Rev. D 63, 084017 (2001) [arXiv:hep-th/9912001]. 261, 269, 270, 271
34. H. L. Verlinde, Nucl. Phys. B 580, 264 (2000) [arXiv:hep-th/9906182].
35. E. P. Verlinde and H. L. Verlinde, JHEP 0005, 034 (2000) [arXiv:hep-th/9912018].
36. M. J. Duff and J. T. Liu, Phys. Rev. Lett. 85, 2052 (2000). 270, 272
37. M. J. Duff and J. T. Liu, Class. Quant. Grav. 18, 3207 (2001) [arXiv:hep-th/0003237]. 261, 270, 272
38. S. W. Hawking, Commun. Math. Phys. 43, 199 (1975). 261
39. P. Candelas, Phys. Rev. D 21, 2185 (1980).
40. D. N. Page, Phys. Rev. D 25, 1499 (1982). 261, 292
41. A. Karch and L. Randall, JHEP 05 (2001) 008, hep-th/0011156. 261, 263, 292
42. W. Israel, Nuovo Cimento Soc. Ital. Phys. B 44, 4349 (1966). 261
43. D. Garfinkle and R. Gregory, Phys. Rev. D 41, 1889 (1990). 262
44. B. Carter and R. Gregory, Phys. Rev. D 51, 5839 (1995) [arXiv:hep-th/9410095].
45. B. Carter, Int. J. Theor. Phys. 40, 2099 (2001) [arXiv:gr-qc/0012036]. 262
46. A. Chamblin and G. W. Gibbons, Phys. Rev. Lett. 84, 1090 (2000) [arXiv:hep-th/9909130]. 265
47. S. B. Giddings, E. Katz and L. Randall, JHEP 0003, 023 (2000) [arXiv:hep-th/0002091]. 265
48. C. Charmousis, R. Gregory and V. A. Rubakov, Phys. Rev. D 62, 067505 (2000) [arXiv:hep-

th/9912160]. 265
49. C. Charmousis, R. Gregory, N. Kaloper and A. Padilla, JHEP 0610, 066 (2006) [arXiv:hep-

th/0604086]. 266
50. J. Garriga and T. Tanaka, Phys. Rev. Lett. 84, 2778 (2000) [arXiv:hep-th/9911055]. 266, 288
51. P. Bowcock, C. Charmousis and R. Gregory, Class. Quant. Grav. 17, 4745 (2000) [arXiv:hep-

th/0007177]. 268, 269
52. L. A. Gergely and R. Maartens, Class. Quant. Grav. 19, 213 (2002) [arXiv:gr-qc/0105058]. 269, 285
53. Z. Keresztes and L. A. Gergely, On the validity of the 5-dimensional Birkhoff theorem: The

tale of a counterexample, arXiv:0712.3758 [gr-qc]. 269
54. R. C. Myers and M. J. Perry, Annals Phys. 172, 304 (1986). 269
55. H. A. Chamblin and H. S. Reall, Nucl. Phys. B 562, 133 (1999) [arXiv:hep-th/9903225]. 269
56. N. Kaloper, Phys. Rev. D 60, 123506 (1999) [arXiv:hep-th/9905210].
57. P. Kraus, JHEP 9912, 011 (1999) [arXiv:hep-th/9910149].
58. P. Binetruy, C. Deffayet and D. Langlois, Nucl. Phys. B 565, 269 (2000) [arXiv:hep-

th/9905012]. 269
59. C. Csaki, M. Graesser, C. F. Kolda and J. Terning, Phys. Lett. B 462, 34 (1999) [arXiv:hep-

ph/9906513].
60. J. M. Cline, C. Grojean and G. Servant, Phys. Rev. Lett. 83, 4245 (1999) [arXiv:hep-

ph/9906523].
61. P. Kanti, I. I. Kogan, K. A. Olive and M. Pospelov, Phys. Lett. B 468, 31 (1999) [arXiv:hep-

ph/9909481]; 269



7 Braneworld Black Holes 297

62. M. J. Duff, Phys. Rev. D 9, 1837 (1974). 270, 272
63. R. Emparan, A. Fabbri and N. Kaloper, JHEP 0208, 043 (2002) [arXiv:hep-th/0206155]. 270
64. T. Tanaka, Prog. Theor. Phys. Suppl. 148, 307 (2003) [arXiv:gr-qc/0203082]. 272
65. W. Kinnersley and M. Walker, Phys. Rev. D 2, 1359 (1970). 273
66. D. M. Eardley, G. T. Horowitz, D. A. Kastor and J. H. Traschen, Phys. Rev. Lett. 75, 3390

(1995) [arXiv:gr-qc/9506041]. 273
67. R. Emparan, Phys. Rev. Lett. 75, 3386 (1995) [arXiv:gr-qc/9506025].
68. S. W. Hawking and S. F. Ross, Phys. Rev. Lett. 75, 3382 (1995) [arXiv:gr-qc/9506020].
69. R. Gregory and M. Hindmarsh, Phys. Rev. D 52, 5598 (1995) [arXiv:gr-qc/9506054]. 273
70. R. Emparan, G. T. Horowitz and R. C. Myers, JHEP 0001, 007 (2000) [arXiv:hep-

th/9911043]. 273
71. R. Emparan, G. T. Horowitz and R. C. Myers, JHEP 0001, 021 (2000) [arXiv:hep-

th/9912135].
72. R. Emparan, R. Gregory and C. Santos, Phys. Rev. D 63, 104022 (2001) [arXiv:hep-

th/0012100]. 273
73. R. Gregory, Nucl. Phys. B 467, 159 (1996) [arXiv:hep-th/9510202]. 273
74. R. Gregory, JHEP 0306, 041 (2003) [arXiv:hep-th/0304262]. 273
75. A. Chamblin, S. W. Hawking and H. S. Reall, Phys. Rev. D 61, 065007 (2000) [arXiv:hep-

th/9909205]. 273
76. R. Gregory, Class. Quant. Grav. 17, L125 (2000) [arXiv:hep-th/0004101]. 274
77. R. Gregory and R. Laflamme, Phys. Rev. Lett. 70, 2837 (1993) [arXiv:hep-th/9301052]. 274, 276
78. R. Gregory and R. Laflamme, Nucl. Phys. B 428, 399 (1994) [arXiv:hep-th/9404071]. 274, 276
79. A. Fabbri and G. P. Procopio, Class. Quant. Grav. 24, 5371 (2007), 0704.3728 [hep-th]. 275
80. C. Charmousis and R. Gregory, Class. Quant. Grav. 21, 527 (2004) [arXiv:gr-qc/0306069]. 276
81. H. Kudoh, T. Tanaka and T. Nakamura, Phys. Rev. D 68, 024035 (2003) [arXiv:gr-

qc/0301089]. 276
82. T. Shiromizu and M. Shibata, Phys. Rev. D 62, 127502 (2000) [arXiv:hep-th/0007203]. 276, 291
83. A. Chamblin, H. S. Reall, H. a. Shinkai and T. Shiromizu, Phys. Rev. D 63, 064015 (2001)

[arXiv:hep-th/0008177].
84. T. Wiseman, Phys. Rev. D 65, 124007 (2002) [arXiv:hep-th/0111057]. 276, 291
85. P. Kanti and K. Tamvakis, Phys. Rev. D 65, 084010 (2002) [arXiv:hep-th/0110298]. 277
86. P. Kanti, I. Olasagasti and K. Tamvakis, Phys. Rev. D 68, 124001 (2003) [arXiv:hep-

th/0307201]. 277
87. R. Casadio and L. Mazzacurati, Mod. Phys. Lett. A 18, 651 (2003) [arXiv:gr-qc/0205129]. 277
88. N. Tanahashi and T. Tanaka, JHEP 0803, 041 (2008) [arXiv:0712.3799 [gr-qc]]. 277
89. T. Shiromizu, K. i. Maeda and M. Sasaki, Phys. Rev. D 62, 024012 (2000) [arXiv:gr-

qc/9910076]. 277
90. R. Maartens, Phys. Rev. D 62, 084023 (2000) [arXiv:hep-th/0004166]. 278
91. C. Germani and R. Maartens, Phys. Rev. D 64, 124010 (2001) [arXiv:hep-th/0107011]. 278, 288
92. M. Bruni, C. Germani and R. Maartens, Phys. Rev. Lett. 87, 231302 (2001) [arXiv:gr-

qc/0108013]. 278, 288
93. N. Dadhich, R. Maartens, P. Papadopoulos and V. Rezania, Phys. Lett. B 487, 1 (2000)

[arXiv:hep-th/0003061]. 278
94. R. Casadio, A. Fabbri and L. Mazzacurati, Phys. Rev. D 65, 084040 (2002) [arXiv:gr-

qc/0111072]. 278
95. M. Visser and D. L. Wiltshire, Phys. Rev. D 67, 104004 (2003) [arXiv:hep-th/0212333].
96. K. A. Bronnikov, V. N. Melnikov and H. Dehnen, Phys. Rev. D 68, 024025 (2003) [arXiv:gr-

qc/0304068].
97. T. Harko and M. K. Mak, Phys. Rev. D 69, 064020 (2004) [arXiv:gr-qc/0401049]. 278
98. R. Gregory, R. Whisker, K. Beckwith and C. Done, JCAP 0410, 013 (2004) [arXiv:hep-

th/0406252]. 278
99. K. A. Bronnikov and S. W. Kim, Phys. Rev. D 67, 064027 (2003) [arXiv:gr-qc/0212112]. 279

100. D. Karasik, C. Sahabandu, P. Suranyi and L. C. R. Wijewardhana, Phys. Rev. D 70, 064007
(2004) [arXiv:gr-qc/0404015]. 279



298 R. Gregory

101. V. P. Frolov, M. Snajdr and D. Stojkovic, Phys. Rev. D 68, 044002 (2003) [arXiv:gr-
qc/0304083]. 279

102. D. Stojkovic, JHEP 0409, 061 (2004) [arXiv:gr-qc/0409038].
103. A. Flachi and T. Tanaka, Phys. Rev. Lett. 95, 161302 (2005) [arXiv:hep-th/0506145]. 289, 290
104. A. Flachi, O. Pujolas, M. Sasaki and T. Tanaka, arXiv:hep-th/0601174. 279, 289, 290
105. V. P. Frolov and D. Stojkovic, Phys. Rev. Lett. 89, 151302 (2002) [arXiv:hep-th/0208102]. 279
106. R. Gregory, V. A. Rubakov and S. M. Sibiryakov, Class. Quant. Grav. 17, 4437 (2000)

[arXiv:hep-th/0003109]. 279
107. S. Creek, R. Gregory, P. Kanti and B. Mistry, Class. Quant. Grav. 23, 6633 (2006)

[arXiv:hep-th/0606006]. 279
108. S. S. Seahra, Phys. Rev. D 71, 084020 (2005) [arXiv:gr-qc/0501018]. 279
109. C. Galfard, C. Germani and A. Ishibashi, arXiv:hep-th/0512001. 279
110. S. Lonsdale and I. Moss, Nucl. Phys. B 298, 693 (1988). 289
111. A. Achucarro, R. Gregory and K. Kuijken, Phys. Rev. D 52, 5729 (1995) [arXiv:gr-

qc/9505039]. 289, 290
112. F. Bonjour, R. Emparan and R. Gregory, Phys. Rev. D 59, 084022 (1999) [arXiv:gr-

qc/9810061]. 289, 290
113. D. Stojkovic, Phys. Rev. Lett. 94, 011603 (2005) [arXiv:hep-ph/0409124]. 290
114. A. L. Fitzpatrick, L. Randall, and T. Wiseman, JHEP 11 (2006) 033, hep-th/0608208. 291, 295
115. A. Karch and L. Randall, JHEP 0106, 063 (2001) [arXiv:hep-th/0105132]. 292
116. O. DeWolfe, D. Z. Freedman and H. Ooguri, Phys. Rev. D 66, 025009 (2002) [arXiv:hep-

th/0111135]. 292
117. S. W. Hawking and D. N. Page, Commun. Math. Phys. 87, 577 (1983). 292
118. T. Hirayama and G. Kang, Phys. Rev. D 64 (2001) 064010, hep-th/0104213. 292
119. A. Chamblin and A. Karch, Phys. Rev. D 72, 066011 (2005) arXiv:hep-th/0412017. 292
120. R. Gregory, S. F. Ross and R. Zegers, arXiv:0802.2037 [hep-th]. 292, 293, 294
121. U. Gen and M. Sasaki, Prog. Theor. Phys. 105, 591 (2001) [arXiv:gr-qc/0011078]. 294
122. R. Gregory and A. Padilla, Phys. Rev. D 65, 084013 (2002) [arXiv:hep-th/0104262].
123. A. Padilla, Phys. Lett. B 528, 274 (2002) [arXiv:hep-th/0111247]. 294
124. S. de Haro, S. N. Solodukhin and K. Skenderis, Commun. Math. Phys. 217, 595 (2001)

[arXiv:hep-th/0002230]. 294
125. A. Fabbri and G. P. Procopio, The holographic interpretation of hawking radiation,

arXiv:0705.3363 [gr-qc]. 295
126. T. Tanaka, Implication of classical black hole evaporation conjecture to floating black holes,

arXiv:0709.3674 [gr-qc].
127. L. Grisa and O. Pujolas, Dressed domain Walls and holography, arXiv:0712.2786 [hep-th].
128. A. Flachi and T. Tanaka, Vacuum polarization in asymptotically anti-de Sitter black hole

geometries, arXiv:0803.3125 [hep-th]. 295



Chapter 8
Higher Order Gravity Theories and Their Black
Hole Solutions

C. Charmousis

Abstract In this chapter, we will discuss a particular higher order gravity theory,
Lovelock theory, that generalises in higher dimensions than 4, general relativity.
After briefly motivating modifications of gravity, we will introduce the theory in
question and we will argue that it is a unique, mathematically sensible, and physi-
cally interesting extension of general relativity. We will see, by using the formalism
of differential forms, the relation of Lovelock gravity to differential geometry and
topology of even-dimensional manifolds. We will then discuss a generic staticity
theorem, quite similar to Birkhoff’s theorem in general relativity, which will give us
the charged static black hole solutions. We will examine their asymptotic behaviour,
analyse their horizon structure and briefly their thermodynamics. For the thermody-
namics we will give a geometric justification of why the usual entropy–area relation
is broken. We will then examine the distributional matching conditions for Lovelock
theory. We will see how induced four-dimensional Einstein–Hilbert terms result on
the brane geometry from the higher order Lovelock terms. With the junction condi-
tions at hand, we will go back to the black hole solutions and give applications for
braneworlds: perturbations of codimension 1 braneworlds and the exact solution for
braneworld cosmology as well as the determination of maximally symmetric codi-
mension 2 braneworlds. In both cases, the staticity theorem evoked beforehand will
give us the general solution for braneworld cosmology in codimension 1 and maxi-
mal symmetry warped branes of codimension 2. We will then end with a discussion
of the simplest Kaluza–Klein reduction of Lovelock theory to a four-dimensional
vector–scalar–tensor theory which has the unique property of retaining second-order
field equations. We will comment briefly the non-linear generalisation of Maxwell’s
theory and scalar–tensor theory. We will conclude by listing some open problems
and common difficulties.
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8.1 An Introduction to Lovelock Gravity

A convenient starting point for treating modifications of gravity is the fundamen-
tal building blocks of general relativity (GR) itself. According to Einstein’s theory,
gravitational interactions are described on a spacetime manifold by a symmetric
metric tensor g endowed with a metric and torsion-free connection (by definition
a Levi-Civita connection) that obeys Einstein’s field equations. In component lan-
guage these equations read as follows:

Gab +Λgab = 8πGTab, (8.1)

where the Einstein tensor Gab = Rab − 1
2 gabR is given with respect to the Ricci

curvature tensor Rab and we have included Λ , the cosmological constant, and Tμν
the energy–momentum tensor. The field equations are acquired from the Einstein–
Hilbert action,

S =
1

16πG

∫
M

d4x
√
−g L (M ,g,∇), (8.2)

where the Langrangian is the functional

L (M ,g,∇) = −2Λ +R, (8.3)

by variation with respect to the metric g and adequate boundary conditions (see, for
example, the appendix in [1]). The bare cosmological constantΛ is a free parameter
of the theory.

We expect Einstein’s theory to break down at very high energies close to the
Planck scale, m2

Pl = 1
16πG , where higher order curvature terms can no longer be

neglected. Theories such as string theory or quantum loop gravity or again mod-
els, of extra dimensions, consider or model the effect of such modifications. GR
on the other hand is very well tested at the solar system and by binary pulsar data
in the regime of weak and strong gravity, respectively [2, 3]. However, recent cos-
mological experiments, or astrophysical data, such as galactic rotation curves, or
even the Pioneer anomaly, appearing just beyond solar system scales, could question
the validity of GR even at classical scales at large enough distances. In particular,
recent cosmological evidence, coming essentially from type Ia supernovae explo-
sions [4–6], points towards an actually accelerating universe. Looking at (8.1) there
are three theoretical directions one could pursue in order to interpret this result.
First, we can postulate the existence of an extremely small positive cosmological
constant of value, Λnow ∼ (10−3eV )4, fixed by the actual Hubble horizon size, driv-
ing the acceleration in (8.1). To get an idea of how tiny this constant is note that
this minute energy scale is most closely associated to the mass scale of neutrinos,
10−3 eV. Hence, although such a possibility1 is the most economic of all, since we
can fit actual multiple data with the use of a single parameter, it actually demands
an enormous amount of fine-tuning. Indeed, from particle physics, the vacuum en-
ergy contributions to the total value of the cosmological constant are of the order of

1 It is not an explanation until we find a precise mechanism of why it is there at all and why now.
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the ultraviolet cut-off we impose on the QFT in question. It can therefore range as
far up and close to the Planck scale (for discussions on the cosmological constant
problem and ways to explain it see [7–9]). The “big” cosmological constant prob-
lem is precisely how all these vacuum energies associated to the GUT, SUSY, the
standard model, etc. are fined-tuned each time to 0 by an exactly opposite in value
bare cosmological constant Λbare appearing in (8.2). The unexplained small value
of the cosmological constant Λnow is then an additional two problems to add to the
usual “big” cosmological constant problem, namely, why the cosmological constant
is not cancelled exactly to zero and why do we observe it now.

A second alternative explanation one can consider is that the accelerated expan-
sion is due to a cosmological fluid of as-yet-unknown matter, dubbed dark energy,
such as a quintessence (scalar) field with some potential appearing in the right hand
side of (8.2). One of the basic strengths of this approach is its simplicity and in some
cases an interesting approach to the cosmological coincidence problem. Among its
basic weaknesses, apart from the usual generic fine-tuning and stability problems to
radiative corrections, is that if we sum up the as-yet-undiscovered matter sectors of
the Universe, i.e. dark matter and dark energy, we conclude that only a mere 4% of
the actual matter that constitutes our universe in its actual state has been discovered
in ground-based accelerators! Although there exist theoretically motivated dark mat-
ter candidates, such as neutralinos or axions, stemming from well-motivated particle
theories, our understanding of dark energy is rather poor. A third, far more ambi-
tious alternative that is less well studied, far more constrained and admittedly less
successful up to now is to modify the dynamics of geometry on the left hand side of
(8.2) not only in the UV but also in the IR sector. This then would mean that Ein-
stein’s theory is also modified at large distances at the scale of the inverse Hubble
scale of today as measured in a LFRW universe (H0/c = 7.566×10−27m−1). This
distance scale is enormous; to get an idea if we consider as our unit the distance of
the earth to the sun (1 AU) we get2 a present horizon distance of 1015AU!

Next question is, how do we modify gravity consistently? One can consider three
basic types of modification which at the end of the day are not completely unrelated.
Indeed, we can include additional fields or degrees of freedom, for example, scalar
or vector, see, for example, [10–12], we can enlarge the parameter space where the
theory evolves, for example the number of dimensions and the geometric connection
in question (we include torsion, etc.) or again we can generalise the field equations.

In all cases, it is very important to fix basic consistency requirements for the mod-
ified gravity theory. To fix the discussion we can ask for three basic requirements:
first we would like that the theory under consideration be consistent theoretically,
for example we ask for sensible vacua of maximal symmetry, such as Minkowski, de
Sitter or anti-de Sitter spacetime, and valid stable perturbation theory around these
vacua. Second we need to satisfy all actual experimental constraints as for ordinary
GR plus we need correct IR cosmological behaviour without the need for dark en-
ergy nor a cosmological constant. Third we want our theory to have the least number

2 Astronomical units are interesting since most tests of general relativity are at distance scales of
the solar system. Hence extrapolation to 1015 scales bigger of such experiments can be sometimes
unjustified or at least questionable.
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of degrees of freedom possible and to be naturally connected to GR theory.3 For ex-
ample, Brans–Dicke theory [10, 11] clearly passes the first and third tests whereas
solar system constraints are rather restrictive [2, 3].

8.1.1 Lovelock’s Theory

In these notes we will restrict our attention to a metric modification of gravity that
generalises GR in higher dimensions. Remaining tangential to GR (principles) we
consider a theory L = L (M,g,∇), whose field variable is a single symmetric met-
ric tensor g endowed with a Levi-Civita connection ∇. We ask for a divergence free
geometric operator on the right hand side of (8.2), since we know that matter obeys
the conservation equation ∇μTμν = 0. Furthermore, in order to bypass perturba-
tive stability constraints for the graviton, we ask for second-order field equations.
These two properties are quite natural for our theory if we want to extend GR at
the classical level but, we emphasise, not necessary at ultraviolet scales. Although
higher derivatives generically introduce ghost degrees of freedom [13]4 around the
vacuum [16], one may argue that these may disappear having correctly summed the
infinite number of higher order corrections. This is precisely the case in string the-
ory which although is a ghost free theory of two-dimensional surfaces embedded in
10 dimensions, at the effective action level, acquires (unphysical) ghost degrees of
freedom because of the effective cut-off we impose. They are in general cured by
arranging for the appearance of the relevant Lovelock term [17, 18] to the relevant
order.

In D = 4 the only two-derivative metric modification to Einstein’s theory is the
addition of a cosmological constant term! In other words, any higher order curvature
invariant either gives a pure divergence term, not contributing to the field equations,
or adds higher order derivatives to the field equations. In higher dimensions this
no-go extension theorem to GR is no longer true. It was the object of Lovelock’s
theorem [19] (see [20, 21] for the D = 5 case) to prove back in the 1970s that
there exist theories containing precise higher order curvature invariants that actually
modify Einstein’s field equations (8.2) while satisfying ∇μTμν = 0, in the face of
modified Bianchi identities, and while keeping the order of the field equations down
to second order in derivatives. The theory in question will be the subject of this brief
study and gives in D = 4 precisely GR with a cosmological constant and in five and
six dimensions reduces to Einstein–Gauss–Bonnet theory (EGB). Lovelock theory
in a nutshell is the generalisation of general relativity in higher dimensions while
keeping the full generality of GR in D = 4.

3 The first and third requirements are not absolute, but one needs to be aware at least when a theory
does not validate one of these.
4 An exception to this rule is f (R) theories [14] since they involve only functionals of the Ricci
scalar. These theories have been known since a long time to be conformally equivalent to scalar–
tensor theories; see, for example, [15].
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Following Lovelock’s proof of the uniqueness theorem [19] (see also the neat
derivation of [22] using differential forms) significant interest developed in these
higher dimensional relativity theories in the 1980s, with motivations originating
from string theory [23, 24] and others originating from Kaluza–Klein cosmol-
ogy [25, 26]. Initial interest in string theory was triggered by Zwiebach [16] who
noted that second-order corrections to the Einstein–Hilbert action, other than the
Gauss–Bonnet invariant, introduced a graviton ghost when considering perturba-
tions around flat spacetime. Effective action calculations of certain string theo-
ries [17, 18] found that the leading (tree-level in gS) α ′ string tension corrections
could give rise, modulo field redefinitions to this order, to the Gauss–Bonnet invari-
ant. Several nice papers appeared uncovering properties and analysing exact solu-
tions of EGB [27–30] while slightly later tackling full Lovelock theory exact solu-
tions [31]. More recently there have been a few exact solutions discussed [32–34]
and some solution-generating techniques developed (see, for example, [35]). Dis-
cussions on issues of energy, stability and the Hamiltonian formalism have been
carried out in [36–40].

Interest in Lovelock theory and in particular its five- and six-dimensional ver-
sion, EGB theory, has attracted quite a lot of attention recently in the context of
braneworlds (see Ruth Gregory’s lecture notes [41]). Indeed from the braneworld
point of view it would seem important to consider the general bulk theory rather than
just GR in five or six dimensions and investigate if the four-dimensional braneworld
picture remained GR like. In a nutshell (we will uncover the details later on) the
Gauss–Bonnet term in the bulk action is similar in nature as is the induced gravity
term [42, 43] to be added to the brane action. Loosely speaking, it thus enhances
GR-type effects on the brane, adding also quite naturally a UV modification to the
usual one identified by the fifth dimension. Perturbation theory in the bulk is ex-
actly the same around a maximally symmetric spacetime and the main difference
is the boundary conditions on the brane which become mixed [44, 45], similarly
for those for induced gravity. In order to evaluate the correct boundary conditions,
which give the braneworld gravitational spectrum, and hence determine the four-
dimensional gravity and stability of the setup, the important difficulty one has to
face is finding the extension of the Israel junction conditions [46–48] in the context
of EGB theory. In fact the junction conditions can be calculated directly, for each
solution in question, by a careful calculation of the distributional terms5 [50–58]
and [59] in the context of braneworld cosmology (see also [60]). The full covariant
solution to the problem was first found by Davis, Gravannis and Willisson [61, 62]
where it was realised that careful variation of the bulk metric with respect to the
boundary term to this theory, discovered by Myers back in the 1980s [63], would
give rise to the correct junction conditions. This is exactly similar to what happens
when one considers careful variation of the Gibbons–Hawking boundary term, thus
obtaining Israel’s junction conditions. Using the junction conditions it was found
that negative tension branes induced tachyonnic instabilities to braneworlds [44, 45]
as well as important changes in the tensor perturbation amplitudes for braneworld

5 As it was pointed out first in [49] distribution theory does not allow for ordinary multiplication
and this can lead to erroneous junction conditions.
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inflation [64]. Braneworld cosmology was further studied with particular focus on
inflation [65] and IR modifications [39, 40, 66]. For codimension 2 braneworlds
the relevant matching conditions were shown to give [67] precisely induced grav-
ity terms on the brane plus extrinsic curvature corrections. However, up to now
exact solutions or braneworld cosmology have not been found. We will discuss
briefly here how one can obtain the maximally symmetric braneworld solutions in
the context of EGB [68]. The full matching conditions of Lovelock theory, irre-
spective of codimension, were given in covariant formalism in [69, 107], and re-
cently maximally symmetric braneworld examples to codimension 4 were found by
Zegers [70].

In this review we will therefore study the basic properties and important char-
acteristics of Lovelock theory. In the next section we will begin by introducing
the theory in differential form language as it is the most adequate way to recog-
nise its nice features and why it has unique properties. After this geometric paren-
thesis, we will study important exact solutions of this theory concentrating on the
case of static black holes and solitons. We will see that a generalised version of
Birkhoff’s theorem holds as for GR, and we will then analyse the static black
hole solutions, their thermodynamics and the solitonic solutions. After this we will
discuss matching conditions of Lovelock theories and we will see that in this as-
pect Lovelock’s theory is in principle a far richer extension to Einstein’s theory
in higher dimensions. Having done this we will discuss braneworld applications
in codimension 1 and codimension 2. We will close by looking at the Kaluza–
Klein reduction of these theories and the type of scalar–vector–tensor theories they
predict [71–73].

8.1.2 Basic Definitions for Lovelock Theory: Differential
Form Language

Our aim in this section is to construct the higher order curvature densities which will
be the building blocks of Lovelock theory and explain what makes them special.
Indeed, in component language these will turn out to be precise but seemingly ad
hoc linear combinations or powers of the Riemann, Ricci tensor and Ricci scalar.
We will thus use differential form language where we will see that they are indeed
powers of the curvature 2 form with a precise and clear geometric interpretation (see
also [74, 75]).

Let (M ,g,∇) denote a D-dimensional spacetime manifold M endowed with a
smooth6 spacetime metric g. The connection ∇ is taken to be a Levi-Civita connec-
tion. To every point P of spacetime M, we associate a local orthonormal basis7 of
the tangent space TPM, (eA), with A = 1, ...,D such that

g(eA,eB) = ηAB. (8.4)

6 By smooth we mean here metrics of at least C2 regularity. This will be relaxed to piecewise C1

when we look at braneworlds, allowing for distributional matter sources.
7 For a more complete account on the geometrical notions used here and precise examples, see [76,
77].
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Equivalently the metric can be expressed as g = ηABθA ⊗θB = gabdxadxb where
the 1-forms θA are precisely dual to the basis vectors eA, since θA(eB) = δA

B .
The metric components in a coordinate frame dxa (we use small-case Latin let-
ters for a coordinate frame and upper-case latin letters for an orthonormal frame)
are thus gab = θA

a θB
b ηAB where θA

a dxa = θA. The dual 1-forms θA form a natural
basis of the vector space of 1-forms Ω (1)(T M). In turn the antisymmetric prod-
uct of 1-forms θA can be used in order to construct a basis of the higher order
forms acting on T M. For any k-form w in Ω (k)(T M), where 0 ≤ k ≤ D, can be
written as

w = wA1···Akθ
A1 ∧·· ·∧θAk , (8.5)

with wA1···Ak some smooth function. Following this simple recipe we can define a
(D− k)-form,

θ �
A1···Ak

=
1

(D− k)!
εA1···AkAk+1···ADθ

Ak+1 ∧·· ·∧θAD , (8.6)

where εA1······AD is totally antisymmetric in its D indices and ε12···D = 1. This quan-
tity is called the Hodge dual of the basis θA1 ∧ ·· · ∧θAk of Ω (k)(T M). It defines a
dual basis of forms in Ω (D−k)(T M). We can therefore write the Hodge dual of any
k-form as

� : Ω (k)(T M) → Ω (n−k)(T M)

ω = ωA1···Akθ
A1 ∧·· ·∧θAk → �ω = ωA1···Akθ �

A1···Ak
. (8.7)

The wedge product of any form with its dual is a D-form, which is by con-
struction proportional to the volume element of spacetime, which we note as θ �.
Obviously for k > D all forms are identically zero. A useful identity is

θB ∧θ �
A1...Ak

= δB
Ak
θ �

A1...Ak−1
−δB

Ak−1
θ �

A1...Ak−2Ak
+ · · ·+(−1)k−1δB

A1
θ �

A2...Ak
. (8.8)

Having constructed this tower of k-forms, for 0 ≤ k ≤ D we now need define two
quantities: the connection 1-form and the curvature 2-form. The connection 1-form
of M, ωA

B which replaces the usual Christophel symbols in coordinate language, is
defined by

dθA = −ωA
B ∧θB (8.9)

since we have assumed a torsionless connection. On the other hand, the spacetime
curvature 2-form is linked to the connection 1-form via the (second Cartan structure)
equation,

RA
B = dωA

B +ωA
C ∧ωC

B . (8.10)

The ambient curvature 2-form is related to the Riemann tensor components by
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RA
B =

1
2

RA
BCDθC ∧θD , (8.11)

with respect to the spacetime Riemann tensor.8

Langrangian densities appear under spacetime integrals; they are therefore by
definition going to be D-forms. Hence in order to build such densities out of the
curvature 2-form (8.11) and its powers, symbolically Rk, we need to construct D-
forms by correctly completing with the relevant Hodge duals (8.7). The higher the
dimension of M , the higher the possible powers of curvature we can consider. In
differential form language it is straightforward to build this way the kth Lovelock
Lagrangian density L(k) which is a D-form defined by

L(k) = RA1B1 ∧·· ·∧RAkBk ∧θ �
A1B1...AkBk

=
k∧

i=1

RAiBi ∧θ �
A1B1...AkBk

, (8.12)

and we stress that k stands for the power of curvature. Clearly, L(0) is the volume
element, giving rise to a cosmological constant whereas it is easy to check using
(8.8) that

L(1) = RA1B1 ∧θ �
A1B1

= Rθ � (8.13)

is the Ricci scalar density and

L(2) = RA1B1 ∧RA2B2 ∧θ �
A1B1A2B2

= (RABCDRABCD −4RABRAB +R2)θ � (8.14)

is the Gauss–Bonnet density which we will denote by Ĝ. Note that for k > D/2,
(8.12) vanishes so that if D = 4 say, then L(0), L(1) and L(2) are the only terms
present in the action (although L(2), as we will now see, turns out to be trivial).
According to Lovelock’s theorem [19], given a metric theory, L(k) are the unique
densities, made out of (M ,∇,g) as defined in the beginning of this section, which
allow for energy conservation and second-order field equations.

8.1.3 Lovelock Densities and Their Geometric Interpretation

So what is special about these densities? The answer lies in differential geometry.
Indeed, if D is even, for k = D/2, the Hodge dual is trivial and the Lovelock density
LD/2 reduces to

L(D/2) =
(D/2)∧
i=1

RAiBi εA1B1...AD/2BD/2
. (8.15)

This D-form can be recognised as the generalised Euler density for an even-
dimensional compact manifold M [78, 79]. It is a geometric quantity whose integral
over M is a topological invariant (see, for example, [80]):

8 As a word of caution, the Riemann tensor components are given here with respect to the orthonor-
mal basis and may differ, as is the case for stationary spacetimes for example, to coordinate basis
components of the same tensor.
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χ [M ] =
1

(4π)D/2(D/2)!

∫
M

L(D/2) . (8.16)

This relation has important consequences since it yields a relation between a ge-
ometric quantity involving curvature with the topology of the manifold M . This
relation is familiar for the case of D = 2 where the k = 1 density, i.e. the Ricci scalar
or Gauss curvature, gives the usual Euler characteristic for two-dimensional com-
pact surfaces with no boundary. This familiar formula then relates surface geometry
with a topological number defining topologically equivalent classes of surfaces,

χ [M ] =
1

(4π)

∫
M

R = 2−2h , (8.17)

where h denotes the number of handles of M (see Fig. 8.1). The above relation
gives in essence the Gauss–Bonnet theorem. This classification is also familiar from
string theory where χ is related to the string coupling gs = eχφ giving the string
surface diagrams (rather than Feynmann diagrams as for point particles) for ori-
entable strings. Variation of this quantity with respect to the local frame θA and
use of the Bianchi identities on the curvature 2-form give us that L(D/2) is locally
an exact form. This in turn tells us that variation of (8.15) gives no contribution
to the field equations (supposing M compact). In turn for D = 4, L(2) stands for
the Gauss–Bonnet density whose integral is now in turn the four-dimensional Euler
characteristic.

Therefore we see that the special feature of Lovelock theory is that its Lan-
grangian densities are dimensional continuations of the Chern–Euler forms9 which
at lower even dimension are topological invariants. For completeness we note that
for an even dimensional manifold with a boundary, the Chern–Gauss–Bonnet rela-
tion is corrected by a Chern boundary form [78, 79]:

χ [M ] =
1

(4π)D/2(D/2)!

[∫
M

L(D/2) +
∫
∂M

Φ(D/2−1)

]
, (8.18)

where the (D−1)-form Φ(D/2−1) reads [76–80] as

χ = 2, χ = 0, χ = −2

, , ,...

,...
Fig. 8.1 Any two-dimensional compact surface can be continuously deformed to one of its Euler
classes parametrised by χ

9 By dimensional continuation we mean that we take k powers of the curvature 2-form and conve-
niently “multiply” by the relevant Hodge dual as in (8.12).
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Φ(D/2−1) =
D/2−1

∑
m=0

D · (D−2) · · ·2(m+1)
1 ·3 · · ·(D−2m−1)

εμ1···μD−1

(
m∧

l=0

Rμ2l−1μ2l

)
∧

(
D−1∧
l=0

K μl N

)
, (8.19)

where K μl N is a 1-form associated to the extrinsic curvature of the boundary ∂M
[74], [69, 107]. It turns out that the relevant boundary terms for Lovelock theory
are again the dimensional continuations of the Chern boundary forms which are
multiples of the induced Riemann tensor on the brane and extrinsic curvature of the
boundary. This is a rather useful statement when treating braneworlds since variation
with respect to the local frame gives the codimension 1 junction conditions [69, 107]
as we will see later on. The dimensionally continued boundary term associated to
the Euler characteristic (8.13), k = 1, is the Gibbons–Hawking boundary term [81]
whereas the boundary term associated to the Gauss–Bonnet invariant is the Myers
boundary term [63]. For details see [69, 107].

The integral of the sum, for k < D/2, of all Lovelock densities L(k) is the most
general classical action for M , yielding up to second-order field equations for the
metric tensor. This is the Lovelock action

SD =
∫

M

[(D−1)/2]

∑
k=0

αkL(k) , (8.20)

where the brackets stand for the integer part. The first three terms of this sum

SD =
∫

M

(
α0θ � +α1R

AB ∧θ �
AB +α2R

AB ∧RCD ∧θ �
ABCD + · · ·

)
(8.21)

are, respectively, the cosmological constant, Einstein–Hilbert and Gauss–Bonnet
terms, yielding the generalisation of the Einstein–Hilbert action in D = 5 and 6
dimensions.

A variation of the action (8.20) including matter, with respect to the frame, gives
the Lovelock equations:

[(D−1)/2]

∑
k=0

αkE(k)A = −2TABθ �B , (8.22)

where E(k)A is the kth Lovelock (D−1)-form:

E(k)A =
k∧

i=1

RAiBi ∧θ �
AA1B1...AkBk

, (8.23)

and we have chosen the normalisation according to

− 1
2RA1B1 ∧θ �

CA1B1
= GA

Cθ �
A ,
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so that the equations of motion read, in component formalism, GAB + · · ·= TAB. For
k = 2 we get,

E(2)A = RA1B1 ∧RA2B2θ �
AA1B1A2B2

= HA
Cθ �

C, (8.24)

where applying (8.8) and (8.11) we obtain in component language

Hab =
gab

2
(Re f cdRe f cd −4RcdRcd +R2)−2RRab +4RacRc

b

+4RcdRc d
a b −2RacdλR cdλ

b

the order 2 Lovelock tensor. In what follows we will explicitly set α0 =−2Λ , α1 = 1
(expect in the section where we will set α1 = ζ ) and α2 = α̂ for the Gauss–Bonnet
coupling.

8.2 Exact Solutions

8.2.1 A Staticity Theorem

We argued in the previous section that Lovelock theory is the natural generalisation
of GR in higher dimensions. Which of the classical properties of GR remain true
when we switch on the extra Lovelock densities. One main difference is that for k ≥
2, i.e. once we allow for the Gauss–Bonnet term (8.14), the Weyl tensor appears in
the field equations. Therefore Ricci flat solutions are no longer solutions of Lovelock
gravity if they are not conformally flat. This means in particular that construction
methods quite common in higher dimensional GR are not going to give generically
solutions for Lovelock theory. For example, it is not clear how one can obtain a
simple solution such as the black string [82], for Lovelock theory [35], and only
a linear correction is known [83]. On the other hand we can question the status of
classical GR theorems in Lovelock theory such as that of Birkhoff’s theorem. Is a
version of this theorem still true in Lovelock theory?

Consider the D-dimensional EGB action

S(2) =
MD−2

2

∫
dDx

√
−g

[
R−2Λ + α̂Ĝ

]
,

(8.25)

where M is the fundamental mass scale of the D-dimensional theory and Ĝ is the
Gauss–Bonnet density (8.14). We note by 2Λ = −k2(D− 1)(D− 2) the bulk bare
negative cosmological constant (2Λ = a2(D−1)(D−2) is the positive cosmological
constant); α̂ is the Gauss–Bonnet coupling which has dimensions of length squared.
We will set α = (D−3)(D−4)α̂ to somewhat simplify notation. This action is that
of Lovelock theory in component language for D = 5 or 6 dimensions. Let us for
simplicity and without loss of generality [84] stick to D = 5 for the rest of this
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section in order to expose the staticity theorem. We will comment on the general
result also involving an electric/magnetic field at the beginning of the next section.

Suppose spacetime has constant three-dimensional spatial curvature. This is the
basic hypothesis we will make here. This is a slight generalisation from the common
assumption of spherical symmetry in Birkhoff’s theorem. A general metric anzatz
for the given symmetry is

ds2 = e2ν(t,z)B(t,z)−
D−3
D−2 (−dt2 +dz2)+B(t,z)

2
D−2

(
dχ2

1−κχ2 +χ2dΩ 2
D−3

)
,

(8.26)
where B(t,z) and ν(t,z) are the unknown component fields of the metric and
κ = 0,±1 is the normalised curvature of the three-dimensional homogeneous and
isotropic surfaces. We choose to use the conformal gauge in order to take full ad-
vantage of the two-dimensional conformal transformations in the t − z plane. The
field equations we are seeking to solve are found by varying the above action (8.25)
with respect to the background metric or by using (8.22) from the previous section
and read as

Eab = Gab +Λgab −αHab = 0, (8.27)

where Hab is given by (8.25).
It is rather useful to review and compare the equivalent system [85], [41] in Ein-

stein gravity for α = 0 where

Rab = − (D−3)Λ
(D−2)

gab.

Pass to light-cone coordinates,

u =
t − z

2
, v =

t + z
2

, (8.28)

and take the combination Rtt +Rzz ±2Rtz = 0; one obtains the equations which read
as follows:

B,uu −2ν,uB,u = 0 , (8.29)

B,vv −2ν,vB,v = 0 . (8.30)

Note then that these are ordinary differential equations with respect to u and v.
They are directly integrable giving

B = B(U +V ) e2ν = B′U ′V ′, (8.31)

where U = U(u) and V = V (v) are arbitrary functions of u and v and a prime stands
for the total derivative of the function with respect to its unique variable. We refer
to (8.29) as the integrability conditions. Using a two-dimensional conformal trans-
formation which is a symmetry of (8.26),
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U =
z̃− t̃

2
, V =

z̃+ t̃
2

gives that the solution is locally static B = B(z̃) and the equivalent of a gener-
alised Birkhoff’s theorem is therefore true. Starting from a general time- and space-
dependant metric, spacetime has been shown to be locally static or equivalently that
there exists a locally timelike Killing vector field (here ∂

∂ t̃ ). By use of the remaining
field equations we can then find the form of B, leading after coordinate transforma-
tion to a static black hole solution of horizon curvature κ .

Let us now take α �= 0. In analogy to the previous case let us take the combina-
tion, Ett +Ezz ± 2Etz = 0. On passing to light-cone coordinates (8.28) we get after
some manipulations

(
9B4/3e2ν +18ακB2/3e2ν +2αB,uB,v

)
(B,uu −2ν,uB,u) = 0,(

9B4/3e2ν +18ακB2/3e2ν +2αB,uB,v

)
(B,vv −2ν,vB,v) = 0 . (8.32)

Note how the Gauss–Bonnet terms factorise nicely leaving the integrability equa-
tions (8.29) we had in the absence of α .

The degenerate case where either B,u = 0 or B,v = 0 corresponds to flat solutions.
For B,u �= 0 and B,v �= 0 the situation is clear: either we have static solutions and the
staticity theorem holds as in the case above or we will have

e2ν =
2α(B2

,z −B2
,t)

9B2/3(B2/3 +4ακ)
. (8.33)

Let us briefly examine the latter case, which we will call class I solution [28, 29]
[59]. The two remaining field equations Eχχ = 0 and Ett −Ezz = 0 are solvable iff
we have the simple algebraic relation

4αk2 = 1. (8.34)

This is quite remarkable: if the coupling constants obey (8.34) then the B field
is an arbitrary function of space and time; in other words the field equations do
not determine the metric functions. Therefore, strictly speaking, Birkhoff’s theorem
does not hold for non-zero cosmological constant.10 Setting B(t,z) = R3(t,z) the
class I metric reads as follows:

ds2 =
R2

,z −R2
,t

κ+ R2

2α

(−dt2 +dz2)+R2
(

dχ2

1−κχ2 +χ2dΩ 2
II

)
. (8.35)

This solution has generically a curvature singularity for R,z = ±R,t . The class I
static solutions are given by

10 Note however that for a non-zero charge Q and spherical symmetry (κ = 1) Birkhoff’s theorem
is always true as was first shown by Wiltshire [30].
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ds2 = − A(R)2

κ+ R2

2α

dt2 +
dR2

κ+ R2

2α

+R2
(

dχ2

1−κχ2 +χ2dΩ 2
II

)
, (8.36)

with A = A(R) now an arbitrary function of R.
In order to obtain t- and z-dependent solutions it suffices to take the functional R

to be a non-harmonic function. Take for instance R = exp( f (t)+g(z)), with f and g
arbitrary functions of a timelike and spacelike coordinate, respectively. Let us also
assume κ = 0 for simplicity; the class I metric in proper time reads as

ds2 = −dτ2 +
2αdg2

1+2α f 2
,τ

+ e2( f +g)
(

dχ2

1−κχ2 +χ2dΩ 2
II

)
. (8.37)

Note here again that f is an arbitrary function of time and g an arbitrary func-
tion of space. The fine-tuning relation between α and k actually corresponds to a
case of enhanced symmetry often refereed to as Chern–Simons gravity (for odd-
dimensional spacetimes [86]).

On the other hand if (8.34) does not hold then Birkhoff’s theorem remains true
in the presence of the Gauss–Bonnet terms, i.e. the general solution assuming the
presence of a cosmological constant in the bulk and three-dimensional constant
curvature surfaces is static if and only if (8.34) is not satisfied. In this case the
remaining two equations give the same ordinary differential equation for B(U +V )
which after one integration reads as

B′ +9B2/3(k2B2/3 +κ)+9α
(

B′

9B2/3
+κ

)2

= 9μ , (8.38)

where μ is an arbitrary integration constant. Then by making B the spatial coordi-
nate and setting B1/3 = r we get the solution discovered and discussed in detail by
Boulware–Deser [27] (κ = 1) and Cai [87] (κ = 0,−1):11

ds2 = −V (r)dt2 +
dr2

V (r)
+ r2

(
dχ2

1−κχ2 +χ2dΩ 2
II

)
, (8.39)

where V (r) = κ+ r2

2α [1±
√

1−4αk2 +4αμ
r4 ] and μ is an integration parameter re-

lated to the gravitational mass. The maximally symmetric solutions are obtained by
setting μ = 0. We will analyse in detail these solutions in the following section.

To close notice how (8.34) is a particular “end” point for (8.39) since the maxi-
mally symmetric solution is defined only for 1 ≥ 4αk2 (for α < 0 there is no such
restriction). We can deduce in all generality that for 1 ≥ 4αk2 there is a unique static
solution (8.39). When (8.34) is satisfied and μ = 0, the two branches coincide (we
have an infinity of solutions) and V = κ ±

√
μ/α + r2

α is then a particular class I
solution (8.34) very similar to the BTZ three-dimensional black holes. For 1 ≤ 4αk2

no solutions exist. We will come back to the six-dimensional version of these black

11 We have kept the same label as in (8.26) for the rescaled time coordinate.
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holes in a moment. Before doing so letus see briefly how they generalise for the full
Lovelock theory.

8.2.2 Lovelock Black Holes

The staticity theorem we evoked in the previous section is generalised without major
difficulty for the general Lovelock theory in arbitrary dimension and in the presence
of an Abelian gauge field [84]. That is for the theory involving a Lovelock action
(8.20) with a Maxwell gauge field:

SEM
D = SD − 1

4

∫
dDx

√
−gFabFab. (8.40)

We obtain from the field equations that apart from the pathological cases of class
1 there is a unique solution given by [31]

ds2 = −V (r)dt2 +
dr2

V (r)
+ r2

(
dχ2

1−κx2 +χ2dΩ 2
D−3

)
, (8.41)

where the electric field strength is F = q2

4πr2(D−2) dt ∧dr. The metric potential reads

V = κ− r2 f (r) where f is a solution of the kth order algebraic equation:

P( f ) =
k

∑
l=0

α̂l f l =
μ

rD−1 − Q2

r2D−4 , (8.42)

where k =
[

D−1
2

]
is the order of the Lovelock theory. It is clear that the higher the

dimension of spacetime, the more the terms in the Lovelock action, and hence the
higher the order of the equation (8.42). The k possible roots of the polynomial P( f )
for κ = 1 actually give us the maximally symmetric vacua of the theory [31]. Note
that even in the absence of a bare cosmological constant these vacua can be flat or
of positive or negative curvature and their magnitude depends on the normalised
Lovelock coupling constants:

α̂0 =
α0

α1

1
(D−1)(D−2)

, α̂1 = 1,

α̂l =
αl

α1

2l

∏
n=3

(D−n),for l > 1 . (8.43)

Positive roots correspond to de Sitter vacua whereas negative roots to anti-de
Sitter vacua. It is interesting to note that in the presence of a bare cosmological
constant α0 �= 0 maximally symmetric vacua may not exist at all. For zero bare cos-
mological constant however the flat vacuum is always solution. Solutions of (8.42)
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have complex horizon structures and have been analysed by Myers and Simon [31]
for Q = 0.

8.2.3 Einstein–Gauss–Bonnet Black Holes

For simplicity, let us now truncate Lovelock theory at k = 2, i.e. neglect higher order
terms other than the Gauss–Bonnet invariant. We will follow for most of this section
the analysis of [31]. We therefore consider the action (8.40) for up to k = 2:

SEM
2 = S(2) −

1
4

∫
dDx

√
−gFabFab. (8.44)

Take a (D− 2)-dimensional space of maximal symmetry and therefore of con-
stant curvature parametrised by κ = 0,−1,1:

hS = hS
μνdxμdxν =

dχ2

1−κχ2 +χ2dΩ 2
(D−3). (8.45)

These are the maximal symmetry spaces we considered in the previous section
and express the constant curvature geometry, normalised to κ , of the horizon sur-
face. If on the other hand we perform a careful Wick rotation to hS we can con-
struct hL, which is of Lorentzian signature, and give spacetimes which are (D−2)-
dimensional sections of Minkowski, adS and dS. Therefore, the staticity theorem
of the previous section tells us that any D-dimensional spacetime metric admitting
(D− 2)-dimensional maximal sub-spaces hS (or sub-spacetimes hL) which is a so-
lution of the field equations emanating from (8.25) is locally isometric to

ds2 = −V (r)dt2 +
dr2

V (r)
+ r2hS

μνdxμdxν , (8.46)

with electric field strength

F =
q2

4πr2(D−2) dt ∧dr, (8.47)

or, modulo a double Wick rotation, to

ds2 = V (r)dθ 2 +
dr2

V (r)
+ r2hL

μνdxμdxν , (8.48)

with magnetic field strength

F =
p2

4πr2(D−2) dθ ∧dr. (8.49)
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In the latter case the theorem gives a local axial Killing vector ∂θ and concerns
locally axially symmetric solutions. This case has been explicitly treated for the
case of general relativity k = 1 in [88]. We will come back to this simple yet pow-
erful result to give the maximally symmetric cosmic string metrics in D = 4 and
maximally symmetric braneworlds of codimension 2 in D = 6.

Since we want to search for black hole criteria we concentrate on the static case
for the rest of this subsection. The potential reads (as can be easily verified from
(8.42)) as

V (r) = κ+
r2

2α

[
1+ ε

√
1+4α

(
a2 +

μ
rD−1 − Q2

r2(D−2)

)]
, (8.50)

with integration constants

Q2 =
q2

2π(D−2)(D−3)
, μ =

16πGM
(D−2)Σκ

, (8.51)

where q is the charge, M is the AD or ADM mass of the solution and Σκ is the
horizon area.

First notable fact is the ambiguity of the vacuum which is parametrised by ε =±1
and gives rise to two branches of solutions. Indeed setting μ = Q2 = 0, κ = 1 gives
us the possible vacua of the theory (8.25). In fact we note that if we set the bare
cosmological constant to be zero a = 0, we note that we do not only obtain the flat
vacuum. For ε = 1, we actually asymptote anti-de Sitter space for α > 0 and dS
space for α < 0. We will refer to this vacuum as the Gauss–Bonnet branch. Indeed
the effective cosmological constant is Λe f f = (D−1)(D−2)

α and hence α plays this
role without a bare cosmological constant term in the action. Unlike what was first
argued in [27] this branch is not, at least, classically unstable [89] in the sense that
one needs to add positive energy to the system for it to roll off to a positive mass
black hole solution. We will here caution the reader that this branch is still dangerous
for stability and a further careful analysis is still needed to answer the question of
the physical relevance of this branch [90]. It is an intriguing fact however that one
can have an effective cosmological constant from higher order curvature terms as
used in [91]. Any solution of this branch will not have an Einstein theory limit,
although there maybe a relevant de Sitter or anti-de Sitter–Einstein-type solution
mimicking (8.46) as we will see in a moment. The ε = −1 branch gives the usual
Minkowski vacuum in the absence of a bare cosmological constant Λ and for large
r the solutions resemble the asymptotically Einstein black holes with the relevant
mass and charge parameters. This branch therefore is perturbatively connected to
Einstein theory and we can consider the action (8.44) as an effective action including
a higher order correction as in actions for closed strings [17, 18]. For the Gauss–
Bonnet branch ε = 1 notice that this is no longer the case and small α yields an
enormous effective cosmological constant. Hence it is in this case an erroneous
statement to consider (8.44) as an effective action and one needs exact solutions
rather than perturbative ones. This fact makes this branch either totally irrelevant
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or far more interesting than the Einstein branch since this is where we can expect
novel effects. Given therefore the fact that the ε = −1 case closely follows known
solutions, we will check out mostly the Gauss–Bonnet branch for novel effects.

The “Chern–Simons” limit is obtained for 4αk2 = −4αa2 = 1 (for α positive
and negative, respectively). The two branches then become one and at this limit
the combined Gauss–Bonnet and cosmological constant is of the same order as the
Einstein term on the right hand side (whose coupling we have normalised to 1). For
zero charge the potential simplifies to the simple function

V (r) = κ+
r2

2α
− m√

r(D−5)
, (8.52)

where m = −
√

μ
α is the mass integration constant. For D = 5 the potential is quite

similar to the BTZ black holes of three dimensions since the mass plays the same
role as curvature of the horizon κ . Furthermore note that we have a weaker gravita-
tional force than in the Einstein case. Indeed set D = 6 and a planar black hole for
α > 0 exists with rh > (2mα)2/5 whereas the Einstein horizon for the same mass
m is its square root. Hence for the same mass the Chern–Simons black hole is of
squared horizon radius compared to the Einstein one. Seemingly the closer we ap-
proach the Chern–Simons branch, the milder the curvature singularity in the bulk
spacetime, an interesting fact to keep in mind.

So much for the branches of solutions. Let us now check out the curvature sin-
gularities and horizons. Generically, there are two possible singularities in the cur-
vature tensor, the usual r = 0, but also a branch singularity at the maximal possible
zero of the square root, say r = r1. We have that r = r1 is solution of

r2(D−2)(1+4αa2)+4α(μrD−3 −Q2) = 0, (8.53)

and whenever r1 > 0 this is the singular end of spacetime (8.46). We have a black
hole solution if and only if there exists r spacelike with r = rh such that V (rh) = 0
and rh > rmin, where rmin = max(0,r1). Indeed the usual Kruskal extension

dv± = dt ± dr
V (r)

(8.54)

gives that (v+,r) and (v−,r) constitute a regular chart across the future and past
horizons of (8.46) as in GR. It is straightforward to show the following criterion:
r = rh is an event horizon for r > rh spacelike if

– rh > rmin

– ε(2ακ+ r2
h) ≤ 0

– rh is root12 of pα(x)=(−a2x2(D−2)+κx2(D−3)+ακ2x2(D−4)−μxD−3 +Q2)sign(α)

Notice therefore that for ε = 1 we have r2
h ≤ −2ακ , i.e. the event horizon is

bounded from above. This immediately yields that for κ = 0 there are no black hole

12 For r spacelike we need p(x) > 0 away from the horizon for α ≥ 0 and the contrary for α < 0.
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solutions in this branch! Second, note that pα=0 is the usual polynomial for Λ -RN
black hole of Einstein theory in D dimensions. In particular, α couples only to the
horizon curvature. Hence for ε = −1 and κ = 0 (the Einstein branch) the horizon
positions are the same as for the GR planar black holes.

Let us now focus on some particular solutions for the Gauss–Bonnet branch
(again we advise the interested reader to see the nice analysis of [31]). Thus take
ε = 1, a = 0, κ = 1. We have r2

h ≤ −2α , hence take |α| = −α > 0. We also take
μ < 0 in order for (8.53) to be strictly positive and to have a correct definition
of mass. Indeed the solution asymptotes a de Sitter–Schwarzschild solution with
positive AD mass for negative μ . Now given that pα(x) = −x3(x3 − x|α|− μ) we

find xmin =
√

|α|√
3

and we have two event horizons as long as − 2
3
√

3
|α|3/2 ≤ μ < 0.

The bigger the mass of the black hole, the further we are allowed to stretch the
α parameter of the action (see Fig. 8.2). The solution has the same structure as
Schwarzschild–de Sitter, with an event horizon and a de Sitter horizon. If we switch
on Q2 we can get a three, horizon structures similar to the de Sitter RN black hole.
When the two horizons come together at xmin we are in the extremal case of the
Nariai solution.

Consider now a hyperbolic horizon, in other words κ = −1. Take Q = a = 0 and
ε = 1. We have r5

1 = −4αμ and r2
h ≥−2α . Therefore for α > 0 and μ > 0 we have

trivially the first two conditions verified. Furthermore, rh is root of −x3 +αx− μ
which is exactly the same polynomial as above for α→−α and μ→−μ . Therefore
in this case we will have a hyperbolic black hole with two event horizons.

J+

J–J–

J+

Fig. 8.2 Penrose diagram for de Sitter RN black hole

8.2.4 Thermodynamics and a Geometrical Explanation
of the Horizon Area Formula

Our aim here is to evaluate the entropy of the black hole solutions discussed in the
previous section. We therefore start by evaluating the mass and temperature. The
mass of the black hole can be easily expressed in terms of the horizon radius, rh, by
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M =
(D−2)Σκ

16πG

(
κ− r2

ha2 +
ακ2

r2
h

+
Q2

αr

)
rD−3

h . (8.55)

In order to calculate the temperature of the black hole we follow the standard
prescription. In summary, we start by Wick-rotating the time direction t → iθ . The
resulting curved manifold of Riemannian signature has an axial Killing vector ∂θ at
its origin situated at r = rh as we will see in a moment. We then impose periodicity,
say Π , in order for the angular coordinate to be well defined. As a result the Eu-
clidean quantum field propagator, with the imposed periodic boundary conditions,
describes a canonical ensemble of states in thermal equilibrium at a heat bath of
temperature T =Π−1 [92].

Indeed consider t → iθ of (8.46). We have

ds2 = V (r)dθ 2 +
dr2

V (r)
+ r2hS

μνdxμdxν , (8.56)

V (r) = κ =
r2

2α

[
1+ ε

√
1+4α

(
a2 +

μ
rD−1 +

P2

r2(D−2)

)]
, (8.57)

with (magnetic) field strength

F =
p2

4πr2(D−2) dθ ∧dr (8.58)

and the metric is then of Euclidean signature for r > rh and p = iq (P = iQ) is the
magnetic charge. Let us put the charge equal to zero for simplicity. The potential
V (r) admits at least one and at most two zeros for 0 < r− < r+ where r = r+ can be
taken to be infinity for the single horizon case. Taking xμ = constant and expanding
around the zeros of the potential V we get,

ds2 ∼
(

1
4V ′2

r±

)
ρ2
±dθ 2 +dρ2

±, (8.59)

with radial isotropic (or cylindrical) coordinate ρ± =
√

2(r−r±)
V ′

r±
. Hence the period-

icity condition reads as

θ ∼ θ +
4π
V ′

r−
∼ θ +

4π
V ′

r+

. (8.60)

Generically we will have conical singularities. In fact the only “finite” regular
solution exists when V ′

r− =V ′
r+ , i.e. for a T = 0 temperature black hole (Nariai limit),

and it corresponds to a regular gravitational instanton. In fact, one has to consider
a simple coordinate transformation to show that space is of non-zero volume and
corresponds to S4 × S2 checkout [68, 93]. When we add charge it is a question
of algebra to show that we can obtain warmer, T �= 0 instantons.13 Gravitational
instantons describe the extremal spacelike path between two non-causally connected

13 I thank Renaud Parentani for pointing this out.
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regions of gravitational solutions [94], in other words their quantum tunnelling. In
the case here the instanton describes decay of the vacuum into a pair of accelerated
black holes [68] as in usual GR (for instanton solutions using boundaries, see [95]).
The decay rate of course would have to be calculated here from scratch since it
corresponds to a novel theory [68]. If it is enhanced it corresponds to a quantum
instability of the vacuum. When r+ =∞ space rounds up smoothly and regularity is
only imposed at r = r−.

After this brief parenthesis let us now calculate the temperature of the black holes
(8.46). The period is Π = 4π

V ′
r±

. It is easy to show the formula

V ′
r± =

1
r±

[
μ(D−1)

rD−5
± (2ακ+ r2

±)
−2κ

]
. (8.61)

The heat bath described by the thermal propagator is of temperature T = Π−1.
Therefore the temperature is found to be (using (8.55))

T =
(D−1)k2rD−1

± +(D−3)κrD−3
± +(D−5)ακ2rD−5

±
4π2r±(r2

± +2ακ)
. (8.62)

Notice that the Gauss–Bonnet term α couples only to the horizon curvature and
the temperature is the same for ε =±1. Also note that a Lovelock planar black hole
will have same temperature as an Einstein one [87]. For the entropy we use here the
standard recipe, dM = T dS (see also [37, 38] for a direct calculation yielding the
same result). Then in turn,

S =
∫

T−1dM =
∫ rh

rmin

T−1 ∂M
∂ r̄h

dr̄h =

=
rD−2

h Σκ
4G

(
1+

2ακ(D−2)
(D−4)r2

h

)
. (8.63)

In order to evade erroneous conclusions it is important to note that rmin =
max(r1,0) [96], since in Lovelock black holes we can hit a singularity before reach-
ing r = 0. Furthermore we see that the entropy is not equal to the area of the black
hole horizon; we pick up a correction from the induced curvature of the horizon
surface. One can understand this fact geometrically using the general formalism of
Iyer and Wald [97, 98]. The entropy calculation in this case [96] gives the result

S =
1

4G

∫ rh

rmin

dxD−2
√

h̃μν(1+2αR̃ind), (8.64)

where the tilded terms correspond to geometrical quantities of the horizon surface,
(r,θ) = constant. The result is exactly the same as the effective action obtained
for a codimension 2 matching condition (8.85) as we will see in the forthcoming
section.14 This is not too surprising with hindsight: in both cases we impose similar

14 Here the extrinsic curvature quantities appearing in (8.85) cancel because the horizon surface is
maximally symmetric.
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regularity conditions which have to do with the temperature and hence the peri-
odicity of the manifold. In one case conical singularities are accounted for by the
presence of branes of given tension whereas for black holes this precisely gives
the temperature of the horizon. The leading Lovelock correction appearing as an in-
duced curvature term is therefore nothing but the extended Euler density of the hori-
zon surface. On the other hand the Einstein term yields the tension of the horizon.
Therefore the failure to obey in this case a horizon area formula is most natural and a
simple geometric consequence. The entropy of the Lovelock black holes follows the
matching condition formula. For example if we were to take a D = 8 dimensional
Lovelock black hole we would get in addition the six-dimensional Gauss–Bonnet
correction of the horizon surface in the entropy formula, namely,

S =
1

4G

∫
dxD−2

√
h̃μν(1+2αR̃ind +α2Ĝind) . (8.65)

We will come back to these formulae in the next section.

8.2.5 The Lovelock Solitons and the Maximally Symmetric
Cosmic Strings

So much for the Euclidean version of (8.46) and the thermodynamics (for details
check [96]). We now Wick-rotate the D−2 horizon sections hS

μν to the Lorentzian
maximally symmetric sections hL

μν to construct soliton solutions (8.48) (the same
obviously holds for the Lovelock case (8.41)). Since the soliton is of axial symme-
try we have r− ≤ r ≤ r+ where r± are the possible zeroes of V. One can always
locally go to the cylindrical anzatz (8.59), with ρ± the local cylindrical coordinate.
The soliton is of infinite proper distance ρ when r+ → ∞. A very nice and simple
interpretation of these solutions and a simple application of the staticity theorem re-
side in D = 4 general relativity. In this case the Lorentzian two-dimensional sections
in (8.48) have precisely the geometry of a maximally symmetric cosmic string, of
internal constant curvature given by κ , situated at r = r± once we allow for some
deficit angle in θ . These are the only solutions describing de Sitter, flat or anti-de
Sitter cosmic strings in a cosmological constant and (possibly) charged background.
We will not analyse these here, but as an example it is easy to note that in the pres-
ence of a bare negative cosmological constant the straight cosmic string bends the
ambient spacetime (this was first noted by Linet [99]). This is in complete contrast
to the flat string which is embedded in a locally flat spacetime. This is because the
resulting geometry is of non-trivial Weyl tensor,

ds2 =
(

k2r2 − μ
r

)
β 2dθ 2 +

dr2

(k2r2 − μ
r )

+ r2(−dt2 +dz2), (8.66)

precisely denoted here by the presence of a non-trivial μ parameter. In (8.66) (t,z)
are the string coordinates, the angular deficit is given by δ = 2π(1− β ) and the
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string is of linear tension T = δ
8πG4

. In other words a straight cosmic string mathe-
matically at least corresponds to a double Wick-rotated black hole solution. Another
way to understand the above result is that in pure AdS spacetime we cannot slice
the geometry in a cylindrically symmetric anzatz. It is a simple exercise to classify
the solutions, the case of de Sitter also presenting some unique characteristics due
to the compactness of its spatial sections (cosmic strings will appear in pairs in this
case). Furthermore, for κ = 0, D arbitrary and negative cosmological constant, we
get the Lovelock AdS soliton analysed in [100] for the case of Einstein gravity. In
a forthcoming section we will see that in D = 6 dimensions the metrics (8.48) will
describe (with the help of suitable matching conditions) the generic bulk geometry
of maximally symmetric four-dimensional braneworlds [68].

8.3 Matching Conditions for Distributional Sources

Most recent applications of Lovelock theory concern braneworld physics. In the
braneworld picture our four-dimensional universe is part of a higher dimensional
manifold and whereas matter is strictly confined on the braneworld, gravity propa-
gates, according to the equivalence principle, in all dimensions. We therefore want
to describe the motion or the evolution of a self-gravitating submanifold which for
simplicity we take to be infinitesimally thin. In other words, we suppose that mat-
ter is confined on the braneworld via a Dirac distribution of dimension equal to the
codimension N = D− 4 of the braneworld. Given that Lovelock theory is the gen-
eral metric theory with second-order field equations, we can except some junction
conditions quite similar to those of Einstein theory.15 It turns out that in Lovelock
theory we can even do better, at least in mathematical terms, and define matching
conditions for higher codimension than that possible for Einstein theory [101–104].

Consider a p-brane Σ embedded in D = p + 1 + N dimensions and suppose that
Σ carries some localised energy–momentum tensor 16:

TAB =
(

Sμν 0
0 0

)
δΣ . (8.67)

The N-dimensional Dirac distribution δΣ on Σ signifies that the brane is of zero
thickness. The question we address is, What are the equations of motion for this self-
gravitating p-brane sourced by the distributional energy–momentum tensor (8.67)?
For codimension N = 1, the answer is given by the well-known Israel junction con-
ditions [46–48] where, if the induced metric is continuous, a discontinuity in the
first derivatives of the metric accounts for the Dirac charge in (8.67). Israel’s junc-
tion conditions describe adequately a wide variety of GR problems and only when

15 Fourth-order field equations would mean that distributional constraints would be imposed on the
continuity of certain third-order directional derivatives which would mean a discontinuous limit to
pure Einstein theory.
16 Greek letters run through brane coordinates while capital Latin from the beginning of the alpha-
bet through bulk coordinates.
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we study junction problems of lesser symmetry do we run into shortcomings be-
cause we can no longer fulfil the continuity condition (for example we cannot match
Kerr to flat spacetime). If the codimension is strictly greater than 2 then there are
no distributional matching conditions in Einstein gravity. Thus, a finite thickness
braneworld is needed in order to obtain non-trivial self-gravitating equations of mo-
tion for Σ , and the resulting equations of motion will generically depend on the reg-
ularisation scheme. This is hardly surprising. We know, for example, that far away
from a gravitational source such as the sun, and by virtue of Birkhoff’s theorem,
we can approximate conveniently its gravitational field using a three dimensional
Dirac distribution. What we mean by far away is precisely the Schwarzschild ra-
dius of the source in question which is about 3 km and which is far smaller than
the actual size of the sun. In Einstein theory even when the codimension is equal
to 2 (for D = 4 say), one only knows the self-gravitating field of a straight cosmic
string, i.e. one induced by a pure tension matter tensor, which gives an overall con-
ical deficit angle [101–104]. Hence even for codimension 2 distributional matching
conditions give only a brute picture of the gravitational field and break down when
the braneworld or defect is of lesser symmetry. The essential point for the discussion
is the codimension of spacetime N, i.e. the number of spacelike or timelike, vectors
defined normal to the brane (for lightlike junctions see [105]). If the codimension
is 1 as it is for the usual junction conditions the p-brane is a hypersurface splitting
the bulk in two and there is no geometry (other than that of real line) in the normal
directions. Once N > 1 we have non-trivial geometry in the normal sections.

Lovelock’s equations for the distributional energy–momentum tensor (8.67) are

[(D−1)/2]

∑
k=0

αkE(k)μ = −2Sμνθ �νδΣ . (8.68)

Our task here involves finding the distributional part of the left hand side to be
matched to the induced energy–momentum tensor Sμν . We will refer to such geo-
metric distributional terms as those carrying Dirac charge. It turns out that not all
Lovelock terms can carry a Dirac charge; we already know this from Einstein theory
which is Lovelock theory in D = 4. Indeed we will find the simple inequality

N/2 ≤ k ≤
[

D−1
2

]
, (8.69)

which selects in particular the Lovelock bulk terms L(k) that can carry a Dirac
charge. Indeed for D = 4 we have N/2 ≤ k ≤ 1 which tells precisely that in Einstein
theory, k = 1 can carry up to codimension 2 Dirac charge. If D > 4 and we allow for
the higher order Lovelock terms we see that we can go to higher codimension.

Without attempting to give a full proof of this result, given in [69, 107], we can
however understand it geometrically in the following way: separate the geometry in
normal and parallel sections as we commonly do in the Gauss–Codazzi formalism.
Let eμ be the p + 1 unit vectors that are everywhere tangent to the brane and nI

the N unit vectors that are everywhere normal to Σ , with the label N denoting the
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radial normal vector. Similarly, split locally the bulk θA into tangent 1-forms θμ and
normal 1-forms θ I . One can then deduce the first and second fundamental forms of
the brane, respectively,

h = ημνθμ ⊗θν , (8.70)

KIμν = g(∇eμnI ,eν), (8.71)

describing the induced metric and extrinsic curvature of Σ . The Gauss–Codazzi
equations can also be written in form formalism which is extremely useful in this
context. Indeed the parallel projection along the brane coordinates gives the Gauss
equation:

Rμ
//ν ≡

1
2

Rμ
νλρθλ ∧θρ =Ωμ

//ν −K μ
//I ∧K I

//ν , (8.72)

where
K I

//μ = KI
νμθν

is the extrinsic curvature 1-form and Ωμ
//ν is the induced curvature 2-form of the

brane, associated with the induced metric hμν . This geometrical identity relates the
background curvature with respect to the induced and extrinsic curvature of Σ .

We look for geometric terms in the μν-components on the left hand side of (8.68)
that can carry a Dirac charge. The situation is inherently different for odd and even
codimension. Indeed for hypersurfaces (codimension 1), the distributional charge in
Einstein theory is provided by a discontinuity of the extrinsic curvature of the metric
KN
μν . Thus we relate local geometry of the brane to matter. In even codimension

defects, like cosmic strings (codimension 2), the normal sections to the brane have
some non-trivial topology that can give rise to distributional terms. For the case of
the straight cosmic string, we have

ds2 = −dt2 +dz2 +dρ2 +L2(ρ)dθ 2 +dρ2, (8.73)

and Einstein field equations are solved for L(ρ) = ρ everywhere but at ρ = 0. We
therefore set

L′(ρ) = 1, ρ �= 0 and L′(ρ) = β , ρ = 0.

The distributional part of (8.68) is then integrated over the normal section and
reads as ∫ 2π

0

∫ r

0
dist(L′′)rdr dθ = −8πG4

∫ ⊥

Σ

T
2π

δ (2) rdr dθ . (8.74)

Given that dist(L′′) = [L′]δ (2) = (1−β ) δ (r)
r , we get the well-known result 2π(1−

β ) = −8πG4T relating here topology (rather than geometry) to matter. It is impor-
tant to note that the curvature of the normal section is precisely given by L′′.

In each case we define locally a normal section, Σ⊥, at each point of the brane,
using the congruence of the normal vectors with specific regularity properties. We
then integrate the μν-equations of motion over an arbitrary such section Σ⊥. Since
the Dirac distribution is by definition independent of regularisation, i.e. to the mi-



324 C. Charmousis

croscopic features of Σ , the only terms that can contribute are those independent of
geometry deformations over Σ⊥ as we take the limit of zero thickness. This boils
down for codimension 2 to working out the distributional part as in (8.74). Math-
ematically, the only terms in (8.68) having this property are proven to be locally
exact forms on Σ⊥, basically made out of powers of extrinsic curvature or curvature
of the normal section as for the example of the cosmic string above.17

What multiply these locally exact forms are now equated to the energy–momentum
tensor of the brane and depend on the parallel geometry (since the normal geome-
try is integrated out) using essentially Gauss’s equation (8.72). Since higher order
Lovelock terms, k > 1, contain higher powers of the curvature tensor, we can ex-
pect the appearance of induced curvature and extrinsic curvature terms from (8.72).
Indeed the relevant terms are sums in 0 ≤ j ≤ min([N/2],k−N +[N/2]) of

σ//
(N,k, j)μ =

⎛
⎝k−N+[N/2]− j∧

l=1

Rλlνl
//

⎞
⎠∧

⎛
⎝N−2[N/2]+2 j∧

l=1

K
ρl

//N

⎞
⎠∧θ �//

μλlνlρl
, (8.75)

which are powers of the projected Riemann curvature two-form R// and the extrinsic
curvatures K//.

For the case of codimension 1 the junction conditions read as follows:

−
[(D−1)/2]

∑
k=0

8αkk!
[
σ//

(N,k)μ

]
= 2Sμ

ν(P)θ �//
ν , (8.76)

and the Dirac charge will be provided by the jump of σ//
(N,k)μ . Here 1 ≤ k ≤ [(D−

1)/2], and the higher the dimension, the more the Lovelock charges that contribute.
For example in p = 3 we get in turn for the k = 1 Einstein and k = 2 Gauss–Bonnet
terms,

σ//
(1,1)μ = 2K ν

//N ∧θ �//
μν = −2(Kν

μ −δνμK)θ �//
ν

σ//
(1,2)μ = 4K ν

//N ∧
(
Ωρλ

// − 1
3
K

ρ
//N ∧K λ

//N

)
∧θ �//

μνρλ

= −4(3Jνμ − Jδνμ −2PνλρμKλρ)θ �//
ν , (8.77)

where we have set

Jμν =
1
3
(2KKμλKλ

ν +KλρKλρKμν −2KμλKλρKρν −K2Kμν),

Pμνλρ = Rμνλρ +2Rν [λgρ]μ −2Rμ[λgρ]ν +Rgμ[λgρ]ν .

17 In codimension 2 the above statement boils down to the famous Gauss–Bonnet theorem. In
higher codimension the relevant forms are precisely the Chern–Simons forms [78, 79].
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and we have dropped the label N for the extrinsic curvature components. Replacing
into the matching conditions (8.76) and taking the corresponding left and right limits
one gets the well-known junction conditions for Einstein [46–48] and Einstein–
Gauss–Bonnet gravity [61, 62]. The equations of motion can also be derived from
the boundary action, after variation with respect to the induced frame θν on the
left and right sides of the brane. In differential form language the action is obtained
trivially from (8.77) by removing the free index,

SΣ = 2α1

∫
Σ

K ν
//N ∧θ �//

ν

+4α2

∫
Σ

K ν
//N ∧

(
Ωρλ

// − 1
3
K

ρ
//N ∧K λ

//N

)
∧θ �//

νρλ , (8.78)

and agrees with the Gibbons–Hawking [81] and Myers [63] boundary terms. It is
obvious now that for D = 7 a 5-brane will have an extra term contributing to the
junction conditions which will be of fifth order in the extrinsic curvatures, etc. This
can be understood intuitively since higher order Lovelock densities involve higher
powers of curvature. For the case of higher odd codimension, see [106, 107].

Let us now concentrate on even codimension N = 2n. We will assume that the
parallel sections are regular. Then when integrated out over Σ⊥, the normal sections
quite naturally yield the charge or topological defect of (χ −β )Area(S2n−1). This
is similar to the defect angle for the infinitesimal cosmic string in four dimensions
(8.73) when we set χ = 1, where χ is the Euler characteristic of the normal section.18

In higher codimension one has to allow for non-trivial Euler character in Σ⊥ in order
to obtain removable-type singularities [70]. Due to their topological character, we
call these topological matching conditions [106, 107]. The matching conditions read
as follows:

(χ−β )Area(S2n−1)
[ p

2 ]
∑̃
k=0

α̃kσ
//

(n,k̃)μ(P) = −2Sνμ(P)θ �//
ν , (8.79)

where we have set α̃k = 22n−1k!(n− 1)!αk/(k− n)! and the smooth parallel forms

σ//
(n,k)μ are given by

σ//
(n,k)μ =

min(n−1,k̃)
∑
j=0

(
k̃
j

)⎛
⎝k̃− j∧

l=1

Rλlνl
//

⎞
⎠∧

(
2 j∧

l=1

K
ρl

//N

)
∧θ �//

μλ1ν1···λk̃− jνk̃− jρ1···ρ2 j
.

(8.80)
Finally, k̃ = k − n, which ranges between 0 ≤ k̃ ≤

[ p
2

]
, will turn out to be the

induced Lovelock rank of (8.80). The parallel forms (8.80) will dictate the dynamics
of the brane. Their expressions involve powers of the projected Riemann tensor R//

on the brane and even powers of the radial extrinsic curvature KN of Σ . To see this,
consider for each k̃ the first term in the sum, j = 0, which reads as follows:

18 I thank Robin Zegers for pointing this out.
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σ//

(k̃,0)μ =

(
k̃∧

l=1

Rλlνl
//

)
∧θ �//

μλ1ν1...λk̃νk̃
. (8.81)

Note the similarity to the bulk Lovelock densities (8.23). Clearly, using (8.72),
we see the appearance of induced Lovelock densities involving Ω// accompanied
by even powers of the extrinsic curvature KN . The former describe the induced
quantities of the brane and the latter how Σ is embedded in the bulk. In particular,
for k̃ = 0 we will have a pure tension term, for k̃ = 1 an Einstein term and for k̃ = 2
a Gauss–Bonnet term with extrinsic curvature terms. Note that the highest rank on
the brane originates from the highest rank Lovelock term in the bulk. This agrees
with the fact that in Einstein gravity, k = 1, there are no matching conditions beyond
n > 2.

Let us compare our result with the work of [67]. Thus, let us consider the case
of a 3-brane embedded in six-dimensional spacetime, for which there are only two
terms in (8.80):

σ//
(1,0)μ = θ �//

μ , σ//
(1,1)μ = R

νρ
// ∧θ �//

μνρ . (8.82)

Thus, using (8.8), (8.11) and (8.72), we obtain from (8.79)

2π (1−β )
{
−α1hμν +4α2G(ind)

μν −4α2 Wμν

}
= Sμν , (8.83)

where [67]

W λ
μ = KNKλ

μN −Kν
μNKλ

νN − 1
2
δλ μ

(
K2

N −Kν
ρNKρ

νN

)
. (8.84)

Note that the bulk Einstein term, k = 1, only allows for an effective cos-
mological constant on the brane, while the Gauss–Bonnet term, k = 2, induces
the Einstein tensor for the brane’s equation of motion. This equation is similar
to the one found in [67], the difference being that here the extrinsic geometry
is supposed perfectly regular. Indeed mathematically there is no reason to sup-
pose that the extrinsic curvature has a jump, the topological defect carrying the
necessary charge in complete analogy to the case of the cosmic string. Addi-
tionally, these matching conditions provide the maximal regularity for the bulk
metric. Furthermore, since the induced and extrinsic geometries are smooth, the
equations of motion can be seen to actually originate from a simple action taken
over Σ as long as we suppose that β = constant. In other words, the degrees
of freedom associated to the normal section are completely integrated out giv-
ing an exact action for the brane’s motion. In differential form language, it is
straightforward to read off the Langrangian density in question. Literally, tak-
ing out the free index for the charge in (8.81) and using Gauss equation (8.72),
we get
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S(p=3,n=1)
Σ = 2π(1−β )

∫
Σ

(
α̃1θ �// + α̃2(R

νρ
// ∧θ �//

νρ )
)

+
∫
Σ

Lmatter

= 2π(1−β )
∫
Σ

√
−h

(
α̃1 + α̃2(Rind −K2 +K2

μν)
)

+
∫
Σ

Lmatter . (8.85)

We see appearing the cosmological constant, the Einstein–Hilbert term with an
extrinsic curvature term quite similar to the finite width corrections one obtains for
cosmic strings in flat spacetime [108]! In other words, the only bulk quantity en-
tering in the equations of motion is the topological defect fixing the overall mass
scale and the extrinsic curvature of the surface giving a matter-like component in
the action. Therefore the Gauss–Bonnet term quite naturally gives an induced grav-
ity term on the brane for codimension 2. This does not mean that there is a localised
0-mode graviton on the brane location but much like in DGP one can expect a quasi-
localised 0-mode or in other words ordinary four-dimensional gravity up to some
crossover scale as in the DGP model [43]. It would seem that the topological quan-
tity β would be giving us in this case a crossover scale for four-dimensional grav-
ity to six-dimensional gravity. Clearly perturbation theory of well-defined warped
backgrounds is needed in order to answer this question.

Equation (8.79) has another surprising property. Indeed, an important simplifica-
tion takes place if we suppose that

[p/2]+1 ≤ n , (8.86)

i.e. that the codimension of the brane is larger than its intrinsic dimension. In that
case, using Gauss’s equation, we have

σ//
(n,k)μ =

(
k̃∧

l=0

Ωλlνl
//

)
∧θ �//

μλ1ν1···λk̃νk̃
, (8.87)

and the matching conditions (8.79) are simply the induced Lovelock equations on
the brane with no extrinsic curvature terms! Therefore, the action for a distributional
3-brane embedded in D = 8,10, ...2d dimensions is exactly the Einstein–Hilbert plus
cosmological constant action:

S(p=3,n>1)
Σ = (1−β )Area(S2n−1)

∫
Σ

√
−h

(
α̃n + α̃n+1Rind

)
+

∫
Σ

Lmatter ,

with Planck scale set by

M2
Pl = (1−β )Area(S2n−1) α̃n+1 .

For a 4- or 5-brane, we will have in addition the Gauss–Bonnet term. etc. In other
words, if the codimension verifies (8.86), all the extrinsic curvature corrections drop
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out and there is a complete Lovelock reduction from the bulk to the induced Love-
lock terms on the brane. All the degrees of freedom originating from the bulk at zero
thickness level are exactly integrated out giving the most general classical equations
of motion for the brane. As a consequence we have in particular energy conservation
on the brane (see also [109]).

8.4 Applications to Braneworlds

Braneworlds offer interesting and direct applications to Lovelock theory. This is
due to the fact that Lovelock theory is the most general metric theory that can enjoy
well-defined junction conditions. There are two reasons for this. First, the field equa-
tions being of second-order Dirac matter distributions still allow a continuous metric
across the junction surface and therefore constraints are imposed on geometric quan-
tities such as the extrinsic curvature and the induced curvature of the braneworld.
They will lead inevitably to a self-gravitating equation of motion for the surface
in codimension 1 and in interesting constraints for codimension 2. Furthermore, in
higher codimension [110–112] Einstein theory does not possess the necessary rich-
ness in order to admit distributional sources, rather the finite thickness of the defect
plays a necessary role or one has to admit the presence of non-removable curvature
singularities at the brane location. Lovelock theory seemingly admits higher codi-
mension distributions [69, 107] and simple examples of codimension 4 braneworlds
are emerging [70]. Here we will concentrate in turn on codimension 1 and codimen-
sion 2 braneworlds.

8.4.1 Codimension 1 Braneworlds and Their Effective
Four-Dimensional Gravity

In this section19 we will consider the application of Lovelock theory to a four-
dimensional braneworld embedded in a five-dimensional curved background space-
time. We will take a flat single brane in adS, i.e. a Randall–Sundrum-type braneworld
and its perturbations, and we will then give the relevant cosmological evolution
equations. We will also include the induced gravity term so as to consider the most
general five-dimensional configuration with a brane boundary. For simplicity we
will also consider Z2 symmetry although the asymmetric cases present a number of
interesting features [39, 40]. Consider therefore the action,

19 I thank Stephen Davis for unpublished collaboration throughout this section which in part can
be found in his papers [113–115].
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S =
M3

2

∫
M

d5x
√
−g

(
ζR+ α̂Ĝ−2Λ

)

−M3
∫
Σ

d4x
√
−h

[
ζK +2α̂(J−2ĜabKab)

]
,

+
M3

2

∫
Σ

d4x
√
−h

(
β R̂−2T

)

−
∫

M
d5x

√
−gLmat −

∫
d4x

√
−hL̂mat (8.88)

where the first line represents the bulk Lovelock theory, the second the Gibbons–
Hawking and Myers boundary terms and the third the induced gravity and matter
contributions. Notice that we have included a dimensionless number ζ in front of the
Einstein–Hilbert term since we will take its zero limit in order to see the resulting
four-dimensional brane gravity of a pure Gauss–Bonnet bulk term. Given the normal
vector na, the five-dimensional projector

hab = gab −nanb (8.89)

is the surface-induced metric and

Kab = hc
a∇cnb (8.90)

is the extrinsic curvature (strictly speaking the first and second fundamental forms
of Σ ). The caret denotes tensors constructed out of hab. [X ] as before denotes the
jump in X across the brane.

The field equations in the bulk and on the brane are

ζGab + α̂Hab +Λgab = M−3Tab, (8.91)

where Hab is the second-order Lovelock tensor (8.25). The bulk and brane energy–
momentum tensors are, respectively, Tab = 2δLmat/δhab − habLmat and Sab =
2δL̂mat/δhab −habL̂mat . According to (8.76) [61, 62] we have

ζ [Kab −Khab]+α
[
3Jab − Jhab +2P̂acdbKcd

]
−β Ĝab = −M−3Sab +T hab. (8.92)

For an adS bulk and a flat brane situated at z = 0 we use a Poincaré patch and the
solution reads as follows:

ds2 = a2(z)ημνdxμdxν +dz2, (8.93)

where the warp factor is a(z) = e−k|z| and we have

Λ = −6k2(ζ −2αk2), T = 2k(3ζ −2αk2) (8.94)

for the bare cosmological constant and the brane tension, respectively. The effec-
tive curvature scale k is given by 2αk2 = ζ ∓

√
ζ 2 +2αΛ/3 from solving the field
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equations in the bulk and on the boundary. The upper sign corresponds to the Ein-
stein branch.

To obtain the effective four-dimensional gravity induced on the brane, we con-
sider a general linear perturbation theory parametrised by γab(x,z), around the back-
ground solution (8.93):

ds2 = a2(z)(ημν + γμν)dxμdxν +2γμzdxμdz+(1+ γzz)dz2. (8.95)

We will deal with gauge in a moment. We consider in particular the perturbed
four-dimensional Ricci tensor corresponding to the linear perturbation γμν ,

Rμν =
1
2

(
2∂α∂(νγμ)α −�4γμν −∂μ∂νγ

)
, (8.96)

and we define R = ημνRμν and Gμν = Rμν − (1/2)ημνR. These are the typical
geometrical quantities encountered in perturbation theory of induced gravity terms
such as DGP braneworlds [43].

Given our mirror symmetry bulk equations (for z > 0) are then

(ζ −2αk2)
{

(6k∂ μγzμ −R)e2kz −3k(4kγzz +∂zγ)
}

=
2

M3 Tzz, (8.97)

(ζ −2αk2)
{

(∂μ∂νγzν −�4γzμ)e2kz −3k∂μγzz −∂z(∂νγμν −∂μγ)
}

=
2

M3 Tzμ ,

(8.98)
and

(ζ − 2αk2)
[(

2Gμν +(ημν�4 −∂μ∂ν)γzz

− 2(∂z −2k)(ημν∂αvα −∂(μvν))
)

e2kz

− (∂ 2
z −4k∂z)(γμν −ημνγ)+3kημν(∂z −4k)γzz

]

=
2

M3 e2kzTμν . (8.99)

The higher order Gauss–Bonnet contribution is recognised easily by the appear-
ance of the coupling constant α while the usual Einstein terms are identified by ζ .
Note first of all how the metric perturbation in the bulk is quasi-identical to those in
Einstein theory apart from the overall coupling of α , with the warp factor k multiply-
ing the differential operator. If there was no warp factor, for example in a Minkowski
bulk, the higher order Gauss–Bonnet term would have had no contribution in lin-
ear perturbation theory. A general remark we can make is that since the coupling
constant α is dimensionful α ∼ [length]2 needs inevitably a bulk curvature scale
to couple to. This can be related, for example, to a bare cosmological constant in
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the bulk or an effective cosmological constant on the brane [44, 45].20 Also note
that given our couplings to matter in action (8.88) we need to have ζ − 2αk2 ≥ 0.
We otherwise quite clearly have a bulk ghost. If we switch off Einstein gravity in
the bulk ζ = 0 and choose α < 0 we have Einstein-like perturbation theory. When
ζ = 2αk2 the linear perturbation operator switches off and seemingly we approach
a strongly coupled limit. This is the case of Chern–Simons gravity which is very
interesting by itself and we invite the interested reader to consult [86]. In turn the
junction conditions at the brane z = 0 are

[
(ζ −2αk2)

{
3kημνγzz −2ημν∂αvα +2∂(μvν) −∂z(γμν −ημνγ)

}]
+2(β +4αk)Gμν =

2
M3 Sμν . (8.100)

Here note that the higher order Lovelock term gives two contributions: first,
a Neumann-type boundary term in the sense that it involves the first derivative
of the perturbation metric and is exactly the same as the usual Einstein pertur-
bation; second, an induced gravity-type term, which is accompanied by the in-
duced gravity coupling β and which yields an induced Einstein term on the brane.
Note that indices in the above equations are raised/lowered with ημν and that
T a

a = Tzz + e−2kzημνTμν .
Before solving the above equation let us first deal with gauge freedom. Any in-

finitesimal bulk transformation, xa → xa + ζ a, gives the transformation law γab →
γab +Lζgab which leaves the bulk equations invariant. Here take the infinitesimal
shift,

z → z+ ε(x,z)
xμ → xμ +ξ μ(x,z)+∂ μξ (x,z) (8.101)

(where ∂μξ μ = 0), and obtain the linear isometries:

hμy → hμy −a(z)(ξ ′
μ +∂μξ ′)−∂με, (8.102)

hyy → hyy −2ε′, (8.103)

hμν → hμν −∂μξν −∂νξμ −2∂μ∂νξ −2a′(z)εημν , (8.104)

which leave the bulk equations invariant. A bulk coordinate transformation however
can also displace the brane by F → F + ε(x,z = 0) where we call F the brane-
bending mode. This is avoided as long as we choose ε(x,z = 0) = 0 on the brane.

It is easy now to solve the equations (8.97) and (8.98) when Tab = 0 and k �= 0
by going to a fixed wall gauge where there is no brane-bending F and the wall is

20 When spacetime is not conformally invariant as, for example, for a black hole, the perturbation
operator picks up extra terms related to the background Weyl curvature that appears in the field
equations for Lovelock theory for k ≥ 2!
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maintained at z = 0. In this gauge the brane boundary conditions are also invariant
under the bulk transformations [42]. We get

γzz = − 1
4k
∂zγ, (8.105)

γzμ = − sgn(z)
8k

∂μγ+Bμ , (8.106)

∂ μ γ̄μν = 0, (8.107)

where γ̄μν = γμν − (1/4)γημν is the trace-free part of γμν and the trace reads γ =
ημνγμν . We also have ∂ μBμ = 0 and �4Bμ = 0 but we can choose gauge for which
Bμ = 0 as we will do from now.

The remaining bulk field equation is given by

(ζ −2αk2)
(
∂ 2

z −4k∂z + e2kz�4

)
γ̄μν = 0 (8.108)

for z > 0. The boundary conditions at z = 0 give

2(ζ −2αk2)∂zγ̄μν +(β +4αk)�4γ̄μν = − 2
M3

{
Sμν −

1
3

(
ημν −

∂μ∂ν�4

)
S

}

(8.109)
and

(ζ +βk +2αk2)�4γ =
4k

3M3 S . (8.110)

It becomes clear here that, as we mentioned above, the equivalent of “brane-
bending” effects are included in the tensionful part of the metric γ which is a genuine
scalar mode since it couples to matter. Following Davis [61, 62] (see also [44, 45],
[52–54]) we obtain the bulk solution (for p2 > 0) which vanishes as z → ∞:

γ̄μν(p,z) ∼ e2k|z|K2

(
|p|ek|z|

k

)
(8.111)

for k > 0, where K2 are special Bessel functions of the second kind. Therefore the
boundary conditions imply

γ̄μν =
e2kzK2(pek|z|/k)

K2(p/k)
2k

p2F(p/k)M3

{
Sμν −

1
3

(
ημν −

pμ pν
p2

)
S

}
, (8.112)

where

F(p/k) = 2(ζ −2αk2)
K1(p/k)

p/kK2(p/k)
+(kβ +4αk2) (8.113)

and

γ = − k
p2

4
3(ζ +βk +2αk2)M3 S . (8.114)
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Any zeros of F with respect to momentum will correspond to tachyon modes on
the brane (see [44, 45] for the 2-brane case) and this is essentially due to the fact
that we have mixed boundary conditions. The condition for a perturbatively stable
theory is to have no ghosts (brane or bulk) and no tachyons; therefore, ζ −2αk2 > 0
and βk +4αk2 ≥ 0.

We now keep k fixed. For large distances and very small momenta p/k,

F(p/k) = (ζ + kβ +2αk2)+
(ζ −2αk2)

2k2 p2
(

ln
p

2k
+ γE

)
+O(p4/k4), (8.115)

where γE ≈ 0.577 is Euler’s constant. For small distances and very large momenta
p/k we have

F(p/k) = (βk +4αk2)+(ζ −2αk2)
(

2k
p
− 3k2

p2 +O((p/k)−3)
)

. (8.116)

Hence for large distances (small p)

Gμν =
k

(ζ + kβ +2αk2)M3 Sμν +O(p2). (8.117)

We obtain Einstein gravity with M2
Pl = M3(ζ + kβ + 2αk2)/k. This is true even if

ζ = 0.
For the short distance behaviour and large p, we define an effective scalar mode

φ = − ζ −2αk2

2k(β +4αk)
γ. (8.118)

Then we obtain

Gμν −2(ημν�4 −∂μ∂ν)φ =
1

(β +4αk)M3 Sμν +O(p−1) (8.119)

and

�4φ = − 2(ζ −2αk2)
3(ζ +βk +2αk2)

1
(β +4αk)M3 S, (8.120)

which is linearised Brans–Dicke gravity with M2
Pl = M3(β +8αk) and

(2ω+3) =
3(ζ +βk +2αk2)

4(ζ −2αk2)
, (8.121)

ω is a Brans–Dicke coupling. This is clearly an effect absent in conventional GR
and is present due to the Gauss–Bonnet term and the induced gravity term on the
brane parametrised by α and β , respectively. Solar system constraints dictate that
ω > 4× 104 in order to agree with time delay experiments as that of the Cassini
spacecraft [116]. Therefore ω should be pretty big and hence we need to have ζ −
2αk2 ≈ 0, close to the Chern–Simons case.
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8.4.2 Codimension 1, Brane Cosmology

Having looked at the perturbation theory of codimension 1 braneworld let us now
study the exact solution for cosmology (see also Gregory’s lecture notes [41]). Con-
sider a four-dimensional cosmological 3-brane of induced geometry:

ds2
ind = −dτ2 +R2(τ)

(
dχ2

1−κχ2 +χ2dΩII

)
. (8.122)

We suppose, following the symmetries of our metric, that matter on the brane
is modelled by a perfect fluid of energy density E and pressure P. The brane is
fixed at z = 0, and the energy–momentum tensor associated with the brane takes
the form

Sν(b)
μ = diag(−E (τ),P(τ),P(τ),P(τ)).

We assume Z2 symmetry across the location of the brane at z = 0 and set
M3 = 1 for the time being. The bulk symmetries are four-dimensional cosmolog-
ical symmetries imposed from (8.122). In other words we have three-dimensional
isotropy and homogeneity which lead us to the bulk metric (8.26). Using (8.26)
and solving the field equations in the bulk we found two bulk gauge degrees
of freedom, U and V . These leave the brane junction conditions invariant, or
equivalently, the distributional part of the field equations (8.25) invariant, if and
only if U = V . The one remaining bulk-brane physical degree of freedom can be
traced after coordinate transformation to the expansion factor or brane trajectory
R = R(τ) [85], [59] evolving in the black hole bulk (8.39). At the end of the day
setting,

A = H2 +
κ
R2 ,

where H = Ṙ
R the generalised Friedmann equation reads as follows:

E −3βA =

√
2A α+ζ −U

α
2(4A α+2ζ +U), (8.123)

where we have defined

U = ±
√
ζ 2 +

2αΛ
3

+
4αμ
R4 ,

and we set
U0 = U(μ = 0) = ζ −2αk2 . (8.124)

Thus to avoid bulk ghosts we must have U0 > 0, and so the lower branch is ruled
out. The standard conservation equation on the brane remains valid and reads as
follows:

dE

dτ
+3H(P+E ) = 0. (8.125)

Squaring (8.123) gives a third-order polynomial for A :
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E 2

2α
= 32αA 3 +

3
2α

A 2(32αζ −3β 2)− 3
α

(2U2 −E β −8ζ 2)A

− 1
2α2 (U −ζ )(U +2ζ )2 . (8.126)

Setting E = T +ρ and μ = 0 we can read off the critical tension from (8.126).
Critical means that the effective cosmological constant on the brane is zero:

T 2
c = 2

ζ −U0

α
(2ζ +U0)2 = 4k2(3ζ −2αk2)2. (8.127)

This condition has to be imposed if we want to analyse genuine geometric ef-
fect on the modified Friedmann equation. In turn this gives to linear order in ρ the
reduced four-dimensional Planck mass

1

M2
Pl

=
1

M3

√
ζ −U0√

2α(2ζ −U0)+β
√
ζ −U0

, (8.128)

where we restore the fundamental mass scale M of the five-dimensional theory. This
agrees with (8.117) obtained in the previous section.

Before proceeding to analysing specific cases it is useful to recast the Friedmann
equation inputting Tc and the warp factor k. In order to avoid ghosts and tachyons
we have β > −8αk/3, so let us set β = β0 −8αk/3. Then (8.123) for κ = 0 reads
as follows:

E = 3β0H2 −8αk(1−Q)H2 +(1−M )
8αk3

3
Q +

2Q

3
Tc

(
1+

M

2

)
, (8.129)

where

Q =

√
H2

k2 +
1+2M

3
+

Tc

12αk3 (1−M )

and

M =

√
1+

4αμ
R4( Tc

6k −
4αk2

3 )2
.

Now we see that in accord with perturbation theory the Gauss–Bonnet term yields
an ordinary Friedmann term just as in induced gravity. This is parametrised by β0.
We emphasise that this term is due to the higher order Lovelock correction and
not due to the higher order Einstein–Hilbert term. Therefore a naive expectation
that an Einstein–Hilbert term of higher dimension gives four-dimensional gravity
whereas a Gauss–Bonnet term differing phenomenology is not true. Quite the con-
trary, higher order Lovelock terms even in codimension 1 give naturally ordinary
four-dimensional gravity at some scales. This can be also expected by the presence
of the induced gravity term in the Myers boundary for Gauss–Bonnet theory.21 Start-

21 I thank Nemanja Kaloper for pointing this out.



336 C. Charmousis

ing from the above we can obtain the second FRW equation which will tell us about
acceleration.

As an example let us now consider the case of zero tension. For a general analysis
see also [82]. Although this means that we fine-tune the couplings, 2αk2 = 3ζ , in
essence nothing special happens and the equations become easier to deal with. This
means that in order not to have ghosts we take α < 0, upon which β0 ∼ M2

pl (for
M=1). The Friedmann equation (for κ = 0) simplifies to

ρ = 3β0H2 +8|α|k(1−Q)H2 − (1−M )
8|α|k3

3
Q, (8.130)

where now Q =
√

H2

k2 + 1+2M
3 and M =

√
1− 9μ

4|α|k4R4 with M = 1 for a pure

adS background. For late-time acceleration we need the second FRW equation. To
obtain it, we differentiate (8.130) and successive use of (8.125) and (8.130) gives

− (ρ+3P)+
8|α|k3

Q

(
H2

k2 +
1−M

3

)(
−H2

k2 +
2(1−M 2)

3M

)

− 16(1−M )Q
3M

|α|k3

= 2
R̈
R

[
ρ

H2 +
8|α|k3

3H2 (1−M )Q− 4|α|k
Q

(
H2

k2 +
1−M

3

)]
. (8.131)

Setting α = 0 gives ordinary Friedmann equations. This limit effectively kills
all the five-dimensional part of the action for the special case we are treating. The
second term in (8.130) can be interpreted as an α correction (of negative sign) and
the third term a bulk black hole term (of positive sign). The terms on the left hand
side of (8.131) tell us whether there is possible acceleration or not at late time for
ordinary matter (w = 0) or radiation w = 1/3. This fact is true modulo the sign of
the parenthesis of the right hand side which may also change sign as, we will see,
inverting the accelerating equations of state but breaking the strong energy condition
given (8.125).

It is now indicative to set μ = 0 and study late-time effects. Then (8.130) simpli-
fies to

ρ = 3β0H2 +16|α|H2(k−
√

k2 +H2) (8.132)

and (8.131) to

− (ρ+3P)− 8|α|H4
√

k2 +H2
= 2

R̈
R

[
ρ

H2 − 4|α|H2
√

H2 + k2

]
. (8.133)

The first term on the right hand side of (8.132) is the usual FRW term (with the
right Planck mass) but the second term is of negative sign which means that we
cannot take H arbitrarily large. For late times cosmology approaches usual LFRW
cosmology. Lastly let us set the bulk Einstein–Hilbert term to zero ζ = 0 and take
α < 0. Then Tc = −4αk3 and
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Q =

√
H2

k2 +M ,

with

M =
√

1+
μ

αk4R4 .

Then the effective LFRW equations reduce to

E = 3β0H2 −8αk(1−Q)H2 −4αk3MQ, (8.134)

which gives at late times ordinary four-dimensional cosmology despite the fact that
there is no Einstein–Hilbert in the bulk action. This proves our claim in the in-
troduction that the higher order terms of Lovelock theory enhance ordinary four-
dimensional gravity.

8.4.3 Codimension 2 Braneworlds

Let us now look at a braneworld of codimension 2; in other words let us consider
six-dimensional bulk spacetime with four-dimensional maximally symmetric sub-
sections. The general bulk solutions, as we saw in Section 8.2, are solitons of mani-
fest axial symmetry with ∂/∂θ as the angular Killing vector,

ds2 = V (r)dθ 2 +
dr2

V (r)
+ r2d2K4, (8.135)

and d2K4 is the four-dimensional line element of adS, flat or dS spacetime, κ =
−1,0,1, respectively. For suitable parameters in (8.57) the radial coordinate varies
in between r− ≤ r ≤ r+, where r = r± are the former horizon positions for (8.46)
and will be the possible brane locations, r = r± for (8.135). In particular r = r+
can be infinity itself in which case the effective volume element in the (r,θ) di-
rection is infinite (for the analysis in the Einstein case see [117–120]). This is the
codimension 2 version of warped compactification. We see therefore that the six-
dimensional soliton (8.135) possesses the correct spacetime symmetries to describe
the general maximally symmetric four-dimensional braneworld of constant curva-
ture. The Wick-rotated version of the staticity theorem tells us in particular that
axial symmetry comes for free and need not be imposed when resolving the system
of bulk equations. In order to introduce codimension 2 branes carrying some two-
dimensional Dirac charge or tension, we need to reintroduce conical singularities at
the relevant axis origins (8.59) which are at r = rh = r− and r = ra = r+ by allowing
for the presence of deficit angles β±. Indeed from (8.60) we have the identification
θ ∼ θ + 2π−β±

1
2V ′

±
which means that we have the relation
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β+
1
2V ′

+
=

β−
1
2V ′

−
(8.136)

which relates the topological parameters β± with the geometrical quantities such as
mass and charge of the soliton metric (8.135). In particular note that we can always
get rid of one of the conical singularities (and the resulting tensionful brane) and thus
construct warped spacetimes with finite volume element and a single brane. Since
the extrinsic curvatures for the branes are zero, the brane junction conditions [67]
are given by

2π(1−β±)
(
δνμ +4αGν

μind

)
= Sνμ , (8.137)

with T brane
μν = Sμνδ (2)(ρ) = Sμν

δ (ρ)
2πρ . We see the appearance of the induced Ein-

stein tensor on the brane originating from the Gauss–Bonnet bulk term in the Love-
lock action [69, 107]. Note that the warp factor is given by the value of r2

±, and in
particular for κ = 1, say, Gind

μν = −3H2
±γμν = − 3

r2
±
γμν where γμν is the de Sitter-

induced metric with curvature set to 1. The induced Newton’s constant on the brane
is given by

G±
4 =

G6

8πα̂(1−β±)
. (8.138)

A complete analysis of these solutions is given in [68] where self-tuning and
self-accelerating solutions are studied.

8.5 The Extended Kaluza–Klein Reduction

In the previous section we discussed warped compactifications of higher dimen-
sional spacetimes. In this section we will discuss the case of Kaluza–Klein com-
pactification. It is well known that the Kaluza–Klein (KK) reduction of Einstein
theory gives us an Einstein–Maxwell dilaton theory (EMD) for specific KK cou-
plings and some periodic boundary conditions. But what is the resulting theory for
the KK reduction of a higher dimensional Lovelock theory? Is the resulting reduced
theory going to give second-order field equations? Is the resulting theory unique as
its higher dimensional counterpart? Let us take here for simplicity the Kaluza–Klein
reduction of an Einstein–Gauss–Bonnet theory from D = 5 dimensions to D = 4 di-
mensions. The full analysis in arbitrary D and for Lovelock theory was carried out
in [71–73] (see also [25, 26] for applications to cosmology). Starting with the rele-
vant Lovelock theory in five-dimensions,

S =
1

16πG

∫
M

d4xdy
√

−g(5)
(

R(5) −2Λ +αĜ(5)
)

. (8.139)

We consider the following ansatz for the five-dimensional metric,
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ds2 = g(5)
ab dxadxb

= (gμν + e−4φAμAν)dxμdxν +2Aμe−2φdxμdy+ e−4φdy2 . (8.140)

As usual we are making the basic assumption that there is a Killing vector ∂y

in the fifth direction; in other words we do not consider here warped solutions;
we are rather interested in integrating out directly and obtaining the resulting four-
dimensional theory. We impose periodic boundary conditions on y. We expect that
the resulting four-dimensional theory will be an extension of the Einstein–Maxwell
dilaton (EMD) theory in four-dimensions with some exponential potential (in the
presence of a five-dimensional cosmological constant). Indeed integrating out the y
direction we obtain [71–73]

Seff =
∫

M4

d4x
√
−ge−2φ

{
R− (∇φ)2 −2Λeγφ − 1

4 F2 +αĜ(4)

+
3α
16

e−8φ
[(

FμνFμν)2 −2Fν
μ Fλ

ν Fκ
λ Fμ

κ

]}
−Sint , (8.141)

where note the presence of a non-trivial interaction term which reads as follows:

Sint = − 1
2

∫
d4x

√−ge−6φ (
FμνFκλRμν

κλ −4FμκFνκRμ
ν −F2R

)
. (8.142)

The interesting result that one can prove is that the field equations obtained from
variation of the fields are still of second order as for the higher dimensional Lovelock
metric theory. In fact the higher order EMD theory in question is the most general
second-order theory that has up to second-order partial derivatives. Any other nu-
merical combination of the interaction terms, for example, would have given higher
order derivatives. Hence we come to the interesting conclusion that higher dimen-
sional Lovelock theories when dimensionally reduced via the KK formalism retain
their nice properties dictated by Lovelock’s theorem. In order to give the simple ba-
sic properties of the four-dimensional theories we freeze out in turn the degrees of
freedom in (8.141).

Taking a constant dilaton the Gauss–Bonnet term drops out, since in four-
dimensions it is a topological invariant, and we are left with a modified Einstein–
Maxwell theory:

Seff =
∫

M4

d4x
√
−g

{
R−2Λ − 1

4 F2 + 3α
16

[(
FμνFμν)2 −2Fν

μ Fλ
ν Fκ

λ Fμ
κ

]}

−Sint . (8.143)

Black hole solutions to this modified Einstein–Maxwell theory and for Λ = 0
have been studied (partially numerically) [121] and they are corrected Reissner–
Nordstrom solutions. For flat spacetime in particular, i.e. setting gμν = ημν , we get
a non-linear version of Maxwell’s theory which reads as follows (see the nice paper
by Kerner [122] whose notation we follow here):



340 C. Charmousis

Seff =
∫

M4

d4x
√
−g

{
− 1

4 F2 + 3α
16

[(
FμνFμν)2 −2Fν

μ Fλ
ν Fκ

λ Fμ
κ

]}
, (8.144)

with field equations (α = 3γ
16e2 ),

∂λ
(

Fλρ − 3γ
2e2 F2Fλρ

)
+

3γ
e2 ∂λ (FμνFλμFρν) = 0,

∂[μFλρ] = 0 . (8.145)

We see that the usual Maxwell equations are corrected by non-linear terms with
coupling γ . It is interesting to recast everything with respect to the electric and
magnetic fields, E,B. We then get

divE = −3γ
e2 B �grad(E �B),

rot(B) =
∂E
∂ t

+
3γ
e2

[
B
∂ (E �B)
∂ t

−E∧grad(E �B)
]
,

div(B) = 0,

rot(E) = −∂B
∂ t

. (8.146)

In this form we can make two obvious remarks. First of all whenever the electric
and magnetic fields are perpendicular to each other, higher order terms drop out and
hence usual EM solutions are unchanged. This holds in particular for electromag-
netic wave solutions. However note that since we loose linearity one can no longer
necessarily superimpose electromagnetic wave solutions if they are not perpendicu-
lar to each other. Furthermore, we can define an induced charge density and current

ρind = −3γ
e2 B �grad(E �B)

jind =
3γ
e2

[
B
∂ (E �B)
∂ t

−E∧grad(E �B)
]

(8.147)

that simulate the higher order terms and verify the continuity equation, ∂ρind
∂ t +

div(jind) = 0.
Let us now in turn freeze the vector field strength Fμν = 0. Then we obtain a

second-order scalar–tensor theory that has been studied quite a lot recently [61, 62].
Numerical black hole solutions to such theories were discussed early on in [123].
It is important to note that in this case the Gauss–Bonnet four-dimensional scalar
is no longer redundant for the field equations and plays the role of the mediator
in between Einstein gravity and the scalar sector. This is true in whatever frame
we choose to go. For example in the Einstein frame, in other words even when the
scalar does not couple to linear order with gravity we have that it does so with the
Gauss–Bonnet term,
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Seff =
∫

M4d4x
√
−g

{
R− (∇φ)2 −2Λeγφ +αeδφ Ĝ

}
, (8.148)

where δ ,γ are some specific couplings depending on the dimensional reduction.
Such models are higher order corrected dark energy-quintessence models that are
used to evoke late-time acceleration of the universe. The essential point here is
that although to leading order they do not affect solar system constraints, once
one includes the Gauss–Bonnet term this is no longer true and their solar system
constraints can be rather stringent [124–130]. Most stringent constraints arise from
light time delay which is calculated from the Cassini spacecraft [116]. For cosmo-
logical constraints which are far weaker one can consult [127–130]. An interesting
alternative has been put forward recently [131] in the case of a higher order gen-
eralisation of Brans–Dicke theory. It was there shown that the combined effect of
the higher order corrections and the scalar sector can reduce or even eliminate the
constraint on the Brans–Dicke parameter ω by imposing particular higher order
coupling functions.

8.6 Concluding Remarks and Open Problems

In these short lectures we saw some of the basic properties of Lovelock theory. Some
cosmological applications were given for codimension 1 and 2 braneworlds. There
are a large number of open problems in these theories and certain results/issues
which we have not treated here. One of the aims of this closing section is to list and
comment on some of these open problems.

Let us start with exact solutions (check out the lecture notes of N. Obers for black
holes in Einstein gravity). For definiteness we studied only the static ones here; a
Taub-NUT version of these has been found in [32]. Stationary metrics for Lovelock
theory have not been found despite efforts. Another important solution which is
missing is that of the black string (see [83] for a perturbative treatment). Although
this solution is trivially found in GR in Lovelock theory this is not the case. The rea-
son is that Ricci flat solutions in four-dimensions (as is the four-dimensional black
hole in the five-dimensional black string) are not vacuum solutions to Lovelock’s
equations. In fact the bulk Weyl tensor also contributes to the field equations (unlike
in Einstein’s equations!) for Lovelock order k ≥ 2 [82, 132], i.e., once we switch on
the Gauss–Bonnet invariant. Therefore a four-dimensional Ricci flat solution which
is non-conformally flat will not solve the Lovelock equations (see the nice analysis
of [35]). The absence of such simple solutions is maybe an accident but maybe it is
also questioning the relevance of the black string type of solutions which are already
questionable [133]. At the same time if such an exact solution was found for Love-
lock theory it would without doubt be genuinely different from its Einstein version.
What could we then say of its stability? Another generic technical problem is that
even in the absence of a bare cosmological constant in the action we always expect
one in the Lovelock solutions due to the presence of multiple branches which have
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no flat Einstein theory limit! Thus the candidate metric for resolution must be writ-
ten in an anzatz suitable for a cosmological constant solution even in the absence of
a bare cosmological constant! We know from studies in Einstein theory that beyond
a certain symmetry a cosmological constant spoils integrability [134, 135]. One way
around this is to start by looking for solutions at special cases as the Chern–Simons
case. Furthermore additional technical problems, due to the absence of Ricci flat-
ness, can arise if we simply translate Einstein results. For example, the diagonal
Weyl anzatz in [134, 136] is a priori no longer true for k > 2 for in order to obtain it
we use the fact that the background is Ricci flat!22

Another subject that deserves further attention is that of higher codimension
braneworlds. We saw that in the context of Lovelock theory one could in principle
define higher codimension braneworlds with Dirac distributions. Only recently [70]
did we obtain the first example of a codimension 4 defect having only a remov-
able Dirac singularity. In particular the case of codimension 2 and its cosmology
has yet to be elucidated. In this review we explained how one could obtain the ex-
act solutions describing the maximally symmetric branes [68]. To what extend does
Lovelock theory permit us to recover Einstein gravity on the brane [67]? Our under-
standing from [69, 107] is that Lovelock gravity gives us induced Einstein terms on
the brane but not Einstein gravity on the brane at all scales. In other words similarly
to DGP, only up to some crossover scale do we expect gravity on a codimension
2 brane to be four-dimensional. Localised four-dimensional gravity will occur only
when there exists a localised four-dimensional zero mode graviton in the gravita-
tional spectrum of perturbations. Therefore clearly, what is missing is a clear-cut
way of developing perturbation theory in Lovelock gravity. We firmly believe that
beyond the Gauss–Bonnet term one has to use differential form formalism which we
highlighted here. Only then will we know the gravitational spectrum of higher codi-
mension braneworlds and their four-dimensional phenomenology. We must point
out that perturbations of Einstein–Gauss–Bonnet black holes have been carried out
in [137–140] and causality issues have emerged in the context of the adS/CFT cor-
respondence and EGB planar black hole perturbations [141].

We hope that with this manuscript we have communicated the fact that Lovelock
theory is a technically challenging, interesting, well-motivated and exciting subject
of research with numerous open problems that await resolution.
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Chapter 9
Gravitational Waves from Braneworld
Black Holes

S.S. Seahra

Abstract In this article, we present the black string model of a braneworld black
hole and analyze its perturbations. We develop the perturbation formalism for
Randall–Sundrum model from first principles and discuss the weak-field limit of
the model in the solar system. We derive explicit equations of motion for the axial
and spherical gravitational waves in the black string background. These are solved
numerically in various scenarios, and the characteristic late-time signal from a black
string is obtained. We find that if one waits long enough after some transient event,
the signal from the string will be a superposition of nearly monochromatic waves
with frequencies corresponding to the masses of the Kaluza–Klein modes of the
model. We estimate the amplitude of the spherical component of these modes when
they are excited by a point particle orbiting the string.

9.1 Introduction

Braneworld models hypothesize that our observable universe is a hypersurface,
called the ‘brane’, embedded in some higher-dimensional spacetime. Standard
model particles and fields are assumed to be confined to the brane, while gravita-
tional degrees of freedom are free to propagate in the full higher-dimensional ‘bulk’.
The phenomenological implications of these models have been intensively studied
by many different authors over the past decade, with great emphasis being placed
on any observational consequences of the existence of large, possibly infinite, extra
dimensions.

There are a number of different braneworld models, but perhaps one of the best
studied is the Randall–Sundrum (RS) scenario [15, 16]. There are two variants of
the model involving either one or two branes, but the common assumption in both
setups is that there is a negative cosmological constant in the bulk characterized by
a curvature scale �. The great virtue of the model is that the gravity behaves like
ordinary general relativity (GR) in ‘weak-field’ situations; i.e., when the density of
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matter is small or scale of interest is large. In particular, one recovers the Newtonian
inverse-square law of gravitation in the RS model as long as the separation between
the two bodies � �. This leads to a direct laboratory constraint on the bulk curva-
ture scale, since Newton’s law is known to be valid on scales larger than around
50μm [10].

The RS model is also consistent with various astrophysical tests of GR in the
weak-field regime, including the solar system tests such as the perihelion shift of
Mercury or time delay experiments using the Cassini spacecraft. On the cosmolog-
ical side, one can also demonstrate that the RS predictions for the dynamics of the
scale factor or the growth of fluctuations match the predictions of GR as long as
the Hubble horizon H−1 is less than the AdS length scale �. Hence, the RS model
matches conventional theory in the low-energy universe.

The ability of the RS model to mimic GR in these cases is both fortuitous and
somewhat surprising. The introduction of a large extra dimension is not a trivial
modification of standard theory, and before the work of Randall & Sundrum the
conventional wisdom was that such models could not be made to be consistent with
the real measured behaviour of gravity. The fact that a fifth dimension can be made
to conform to what we observe is part of the reason for the flurry of activity on the
RS model since its inception. It also raises an interesting problem: The correspon-
dence between the GR and the RS scenario must fail at some point, since at the end
of the day they have very different geometric setups. In what situations does this
breakdown occur, and are there any associated observational signatures that we can
use to constrain the RS model?

We mentioned above that RS cosmology matches GR cosmology for H� � 1.
Thus, we are led to look for deviations from standard theory in cosmological epochs
with H� � 1. This corresponds to the very high-energy radiation epoch, which is
just after inflation and before nucleosynthesis. People have looked at modifica-
tions to the background expansion, dynamics of gravitational waves [9, 11, 17],
and the growth of density perturbations in the high-energy epoch [1]. All of these
phenomena show some departures from GR, but as of yet there has been no
clean observational test proposed that could either rule out or rule in the RS
model.

Hence, we need to look to other ‘strong field’ scenarios to test the model. One
possibility is to look at black holes in the Randall–Sundrum model. We know that
these objects are not describable in the Newtonian limit of GR, so one might ex-
pect that braneworld black holes to exhibit observable deviations from the ordi-
nary Schwarzschild or Kerr solutions. However, there is a major problem with using
black holes a probe of braneworld models: There is no known ‘reasonable’ brane-
localized black-hole solution in the RS one brane scenario. The lack of a solution
is not for lack of trying, many authors have attempted various techniques to find
one. One of the first attempts was using the 5-dimensional black string solution as
a bulk manifold [2]. However, it was demonstrated that such solutions were subject
to the famous Gregory–Laflamme instability [8], which is a tachyonic mode with a
long wavelength in the extra dimension. Others have tried to find brane black holes
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numerically [14], but success has been limited to small mass objects GM � �. Sev-
eral have conjectured that the lack of a solution in the one brane case has to do with
the AdS/CFT correspondence [5, 19].

However, the situation is somewhat better in the two brane case. It turns out that
it is possible to find a stable braneworld model in this case and that the brane geom-
etry is exactly 4-dimensional Schwarzschild [3, 4, 18]. Like the model considered
in [2], this is based on the 5-dimensional black string. The Gregory–Laflamme in-
stability is evaded by the infrared cutoff introduced by the second brane, i.e., the
model is stable if the branes are close enough together. Because the geometry on the
brane is identical to that of the Schwarzschild metric, the model is automatically in
agreement with any test of GR sensitive to the background geometry only, such as
light bending, perihelion shifts, time delays, etc.

Hence, we need to look at the perturbative aspects of the model to obtain differ-
ences with ordinary GR. In particular, we are interested in the gravitational waves
(GWs) emitted from these black strings when they are displaced from their equilib-
rium configuration. Of primary importance is the issue of whether or not any devia-
tions from the predictions of GR are observable by GW detectors such as LIGO or
LISA. These issues are the subject of these lecture notes.

In Sect. 9.2 we introduce the RS model and the black string braneworld. In
Sect. 9.3, we describe how to perturb the model and derive the relevant equations
of motion. In Sect. 9.4, we show how to separate variables in the governing par-
tial differential equations (PDEs) by introducing the Kaluza–Klein (KK) decom-
position. In Sect. 9.5, we consider the limit under which we recover GR. In Sect.
9.6, we define the complete mode decomposition in terms of KK modes and spher-
ical harmonics used in the rest of the notes. In Sect. 9.7, we consider homoge-
neous solutions to the axial equations of motion and determine (via simulations)
the characteristic GW signal produced by the string. In Sect. 9.8, we consider the
spherical sector of the GW spectrum excited by generic sources and discuss the
Gregory–Laflamme instability in detail. In Sect. 9.9, we write down explicit equa-
tions of motion for the spherical GWs emitted by a point particle orbiting the black
string and consider their numeric solution. In Sect. 9.10, we estimate the amplitude
of Kaluza–Klein radiation emitted from the black string for a given point parti-
cle source. Finally, in Sect. 9.11 we give a brief summary and outline some open
questions.

9.2 A Generalized Randall–Sundrum Two Brane Model

In this section, we present a generalized version of the Randall–Sundrum two brane
model in a coordinate invariant formalism. We begin by outlining the geometry of
the model, the action governing the dynamics, and the ensuing field equations. We
then specialize to the black string braneworld model, which will be perturbed in the
next section.
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9.2.1 Geometrical Framework and Notation

Consider a (4+1)-dimensional manifold (M ,g), which we refer to as the ‘bulk’. One
of the spatial dimensions of M is assumed to be compact; i.e., the 5-dimensional
topology is R

4 × S. We place coordinates xA on M so that the 5-dimensional line
element reads:

ds2
5 = gABdxAdxB. (9.1)

We assume that there is a scalar function Φ that uniquely maps points in M into the
interval I = (−d,+d]. Here, d is a constant parameter that is one of the fundamental
length scales of the problem. The gradient of this mapping ∂AΦ is spacelike,

∂AΦ ∂AΦ > 0, (9.2)

and is tangent to the compact dimension of M . This scalar function defines a family
of timelike hypersurfaces Φ(xA) = Y , which we denote by ΣY . The two submani-
folds at the endpoints of I, Σd and Σ−d , are periodically identified.

Let us now place 4-dimensional coordinates zα on each of the ΣY hypersurfaces.
These coordinates will be related to their 5-dimensional counterparts by parametric
equations of the form: xA = xA(zα). We then define the following basis vectors

eA
α =

∂xA

∂ zα
, nA =

∂AΦ√
∂BΦ ∂BΦ

, nAeA
α = 0, nAnA = +1. (9.3)

The tetrad eA
α is everywhere tangent to ΣY , while nA is everywhere normal to ΣY .

The projection tensor onto the ΣY hypersurfaces is given by

qAB = gAB −nAnB, nAqAB = 0. (9.4)

From this, it follows that the intrinsic line element on each of the ΣY hypersurfaces is

ds2
4 = qαβdzαdzβ , qαβ = eA

αeB
βqAB = eA

αeB
βgAB. (9.5)

The object qαβ behaves as a tensor under 4-dimensional coordinate transformations
zα → z̃α(zβ ) and is the induced metric on the ΣY hypersurfaces. It has an inverse
qαβ that can be used to define eαA :

eαA = gABqαβ eB
β , δαβ = qαγqγβ = eαA eA

β . (9.6)

Generally speaking, we define the projection of any 5-tensor TAB onto the ΣY

hypersurfaces as
Tαβ = eA

αeB
βTAB, (9.7)

where the generalization to tensors of other ranks is obvious. The 4-dimensional
intrinsic covariant derivative of Tαβ is related to the 5-dimensional covariant deriva-
tive of TAB by

[∇αTμν ]q = eA
αeM

μ eN
ν ∇AqB

MqC
NTBC, (9.8)
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where the notation [· · · ]q means that the quantity inside the square brackets is calcu-
lated with the qαβ metric.

Finally, the extrinsic curvature of each ΣY hypersurface is

KAB = qC
A∇CnB = 1

2 £nqAB = KBA, nAKAB = 0,

Kαβ = eA
αeB

βKAB = eA
αeB

β∇AnB. (9.9)

9.2.2 The Action and Field Equations

We label the hypersurfaces at Y = y+ = 0 and Y = y− = +d as the ‘visible brane’
Σ+ and ‘shadow brane’ Σ−, respectively. Our observable universe is supposed to
reside on the visible brane. These hypersurfaces divide the bulk into two halves: the
left-hand portion ML which has y ∈ (−d,0), and the right-hand portion which has
y ∈ (0,+d). The action for our model is

S =
1

2κ2
5

∫
ML

[
(5)R−2Λ5

]
+

1

2κ2
5

∫
MR

[
(5)R−2Λ5

]

+ ∑
ε=±

1
2

∫
Σ ε

(
L ε −2λ ε − 1

κ2
5

[K]ε
)

+
1
2

∫
ML

LL +
1
2

∫
MR

LR. (9.10)

In this expression, κ2
5 is the 5-dimensional gravity matter coupling, Λ5 = −6k2 is

the bulk cosmological constant, λ± =±6k/κ2
5 are the brane tensions, and � = 1/k is

the curvature length scale of the bulk. Also, L ± is the Lagrangian density of matter
residing on Σ±, while LL and LR are the Lagrangian densities of matter living in
the bulk. Note that the visible brane in our model has positive tension, while the
shadow brane has negative tension.

The quantity [K]± is the jump in the trace of the extrinsic curvature of the ΣY

hypersurfaces across each brane. To clarify, suppose that ∂M±
L and ∂M±

R are the
boundaries of ML and MR coinciding with Σ±, respectively. Then,

[K]+ = qαβKαβ

∣∣∣
∂M +

R

−qαβKαβ

∣∣∣
∂M +

L

, (9.11a)

[K]− = qαβKαβ

∣∣∣
∂M−

L

−qαβKαβ

∣∣∣
∂M−

R

. (9.11b)

We can now write down the field equations for our model. Setting the variation
of S with respect to the bulk metric gAB equal to zero yields that

GAB −6k2gAB = κ2
5

[
θ(+y)T R

AB +θ(−y)T L
AB

]
,

T L,R
AB = − 2√−g

δ (
√−gLL,R)
δgAB . (9.12)
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Meanwhile, variation of S with respect to the induced metric on each boundary
yields

Q±
AB =

{
[KAB]±2kqAB +κ2

5 (TAB − 1
3 T qAB)

}±
= 0, (9.13a)

T±
AB = eαA eβB

{
− 2√−q

δ (
√−qL )
δqαβ

}±
. (9.13b)

Here, the {· · ·}± notation means that everything inside the curly brackets is eval-
uated at Σ±. We see that (9.12) are the bulk field equations to be satisfied by the
5-dimensional metric gAB, while (9.13) are the boundary conditions that must be
enforced at the position of each brane. Of course, (9.13) are simply the Israel junc-
tion conditions for thin shells in general relativity.

In what sense is our model a generalization of the RS setup? The original
Randall–Sundrum model exhibited a Z2 symmetry, which implied that ML is the
mirror image of MR. Also, in the RS model the bulk was explicitly empty. However,
since we allow for an asymmetric distribution of matter in the bulk, we explicitly
violate the Z2 symmetry and bulk vacuum assumption.

9.2.3 The Black String Braneworld

We now introduce the black string braneworld, which is a Z2 symmetric solution of
(9.12) and (9.13) with no matter sources:

LL
.= LR

.= L ± .= 0. (9.14)

Here, we use
.= to indicate equalities that only hold in the black string background.

The bulk geometry for this solution is given by

ds2
5

.= a2(y)
[
− f (r)dt2 +

1
f (r)

dr2 + r2 dΩ 2
]

+dy2, (9.15a)

f (r) = 1−2GM/r, a(y) = e−k|y|. (9.15b)

Here, M is the mass parameter of the black string and G = �Pl/MPl is the ordinary
4-dimensional Newton’s constant. The function Φ used to locate the branes is trivial
in this background:

Φ(xA) .= y, (9.16)

which means that the Σ± branes are located at y = 0 and y = d, respectively. The
ΣY

.= Σy hypersurfaces have the geometry of Schwarzschild black holes, and there
is 5-dimensional line-like curvature singularity at r = 0:

RABCDRABCD
.=

48G2M2e4k|y|

r6 +40k2. (9.17)
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Fig. 9.1 A schematic illustration of the black string braneworld

Note that the other singularities at y = ±∞ are excised from our model by the re-
striction y

.= Y ∈ (−d,d], so we will not consider them further. An illustration of the
black string braneworld background is given in Fig. 9.1.

We remark that it is actually possible to replace the 4-metric in square brackets in
(9.15) by any 4-dimensional solution of Rαβ = 0 and still satisfy the 5-dimensional
field equation. That is, we could have

ds2
5

.= a(y)2ds2
Kerr +dy2, (9.18)

where ds2
Kerr is the line element corresponding to the Kerr solution for a rotating

black hole. Such a solution is known as the rotating black string. The dynamics of
perturbations of the rotating black string are still an open question due to the extreme
complexity of the governing equations of motion.

Finally, note that the normal and extrinsic curvature associated with the ΣY hy-
persurfaces satisfies the following convenient properties:

nA
.= ∂Ay, nA∇AnB .= 0, KAB

.= −kqAB. (9.19)

These expressions are used liberally below to simplify formulae evaluated in the
black string background.

9.3 Linear Perturbations

We now turn our attention to perturbations of the black sting braneworld. We first
describe the perturbative variable we use to describe the fluctuations of the system,
then we linearize the bulk field equations and junction conditions. We finish this
section by rewriting the perturbative equations of motion in a particularly useful
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form. Note that while we work from first principals in Sects. 9.3, 9.4, and 9.5, similar
calculations and results have appeared many times in the literature, see the seminal
works by Randall & Sundrum [15] and Garriga & Tanaka [6], for example.

9.3.1 Perturbative Variables

We are ultimately interested in the behavior of gravitational waves in this model,
which are described by fluctuations of the bulk metric:

gAB → gAB +hAB, (9.20)

where hAB is understood to be a ‘small’ quantity. The projection of hAB onto the
visible brane is the observable that can potentially be measured in gravitational wave
detectors. But it is not sufficient to consider fluctuations in the bulk metric alone—to
get a complete picture, we must also allow for the perturbation of the matter content
of the model as well as the positions of the branes.

Obviously, matter perturbations are simply described by the T L
AB, T R

AB, and T±
AB

stress–energy tensors, which are considered to be small quantities of the same order
as hAB. On the other hand, we describe fluctuations in the brane positions via a
perturbation of the scalar function Φ :

Φ(xA) → y+ξ (xA). (9.21)

Here, ξ is a small spacetime scalar. Recall that the position of each brane is implic-
itly defined by Φ(xA) = y±. Hence, the brane locations after perturbation are given
by the solution of the following for y:

y+ξ
∣∣∣
y=y±

+(y− y±)∂yξ
∣∣∣
y=y±

+ · · · = y±. (9.22)

However, note that y− y± is of the same order as ξ , so at the linear level the new
brane positions are simply given by

y = y±−ξ
∣∣∣
y=y±

. (9.23)

Hence, the perturbed brane positions are given by the brane-bending scalars:

ξ± = ξ
∣∣∣
y=y±

, nA∂Aξ± = 0. (9.24)

Note that because ξ+ and ξ− are explicitly evaluated at the brane positions, they are
essentially 4-dimensional scalars that exhibit no dependence on the extra dimension.

Having now delineated a set of variables that parameterize the fluctuations of the
black string braneworld, we now need to determine their equations of motion.
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9.3.2 Linearizing the Bulk Field Equations

First, we linearize the bulk field equations (9.12) about the black string solution.
Notice that (9.12) only depends on the bulk metric and the bulk matter distribution.
Hence, the linearized field equations will only involve hAB, T L

AB, and T R
AB. The actual

derivation of the equation proceeds in the same manner as in 4-dimensions, and we
just quote the result

∇C∇ChAB −∇C∇AhBC −∇C∇BhAC +∇A∇BhC
C −8k2hAB = −2κ2

5Σ
bulk
AB , (9.25)

where

Σ bulk
AB =Θ(+y)(T R

AB − 1
3 T RgAB)+Θ(−y)(T L

AB − 1
3 T LgAB). (9.26)

The wave equation (9.25) is valid for arbitrary choices of gauge and generic matter
sources. If we specialize to the Randall–Sundrum gauge

∇AhAB = 0, hA
A = 0, hAB = eαA eβBhαβ , (9.27)

equation (9.25) reduces to

Δ̂AB
CDhCD +(GMa)2(£2

n −4k2)hAB = −2(GMa)2κ2
5Σ

bulk
AB , (9.28)

where we have defined the operator

Δ̂AB
CD = (GMa)2[qMN∇MqP

NqC
AqD

B∇P +2(4)RA
C

B
D]

= (GMa)2eαA eβB

[
δ γαδδβ ∇

ρ∇ρ +2Rα
γ
β
δ
]

q
eC
γ eD

δ

= (GM)2eαA eβB

[
δ γαδδβ ∇

ρ∇ρ +2Rα
γ
β
δ
]

g
eC
γ eD

δ . (9.29)

Here, (4)RACBD is the Riemann tensor on Σy, which can be related to the 5-dimensional
curvature tensor via the Gauss equation

(4)RMNPQ = qA
MqB

NqC
PqD

QRABCD +2KM[PKQ]N . (9.30)

On the second line of (9.29) the 4-tensor inside the square brackets is calculated
using qαβ . We can re-express this object in terms of the ordinary Schwarzschild
metric gαβ , which is conformally related to qαβ via the warp factor:

qαβ = a2gαβ , (9.31a)

gαβdzαdzβ = − f dt2 + f−1 dr2 + r2dΩ 2. (9.31b)
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The quantity in square brackets on the third line of (9.29) is calculated from gαβ .1

One can easily confirm that Δ̂AB
CD is ‘y-independent’ in the sense that it commutes

with the Lie derivative in the nA direction:

[(4)Δ̂AB
CD,£n] = 0. (9.32)

In addition, the (GM)2 prefactor makes Δ̂AB
CD dimensionless.

Notice that the left-hand side of (9.28) is both traceless and manifestly orthogonal
to nA, which implies the following constraints on the bulk matter:

Σ bulk
AB = eαA eβBΣ

bulk
αβ , qαβΣ bulk

αβ = 0. (9.33)

In other words, our gauge choice is inconsistent with bulk matter that violates these
conditions. If we wish to consider more general bulk matter, we cannot use the
Randall–Sundrum gauge.

9.3.3 Linearizing the Junction Conditions

Next, we consider the perturbation of the junction conditions (9.13). These can be
re-written as

Q±
AB =

{
[ 1

2∇(AnB) −n(A|n
C∇Cn|B)]± kqAB +κ2

5

(
TAB − 1

3 T qAB
)}±

= 0. (9.34)

We require that Q±
AB vanish before and after perturbation, so we need to enforce that

the first-order variation δQ±
AB is equal to zero.

In order to calculate this variation, we can regard the tensors Q±
AB as functionals

the brane positions (as defined by Φ), the brane normals nA, the bulk metric, and the
brane matter:

Q±
AB = Q±

AB(Φ ,nM,gMN ,T±
MN), (9.35)

from which it follows that

δQ±
AB =

{
δQAB

δΦ
δΦ+

δQAB

δnC
δnC +

δQAB

δgCD
δgCD +

δQAB

δTCD
δTCD

}±

0
. (9.36)

The {· · ·}±0 notation is meant to remind us that after we have calculated the varia-
tional derivatives, we must evaluate the expression in the background geometry at
the unperturbed positions of the brane.

We now consider each term in (9.36). For simplicity, we temporarily focus on
the positive tension visible brane and drop the + superscript. The first term repre-
sents the variation of Q±

AB with brane position, which is covariantly given by the Lie
derivative in the normal direction:

1 Unless otherwise indicated, for the rest of the paper any tensorial expression with Greek indices
should be evaluated using the Schwarzschild metric gαβ .
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{
δQAB

δΦ
δΦ

}
0
= {−ξ£nQAB}0 . (9.37)

But the Lie derivative of QAB vanishes identically in the background geometry, so
this term is equal to zero.

The second term in (9.36) represents the variation of QAB with respect to the
normal vector. Making note of the definition (9.3) of nA in terms of Φ , as well as
δΦ = ξ and nA∇Aξ = 0, we arrive at

δnA = ∇Aξ , nAδnA = 0. (9.38)

Notice that since the normal itself must be continuous across the brane, we have
[δnA] = 0. After some algebra, we find that the variation of the junction conditions
with respect to the brane normal is non-zero and given by

{
δQAB

δnC
δnC

}
0
= 2qC

AqD
B∇C∇Dξ . (9.39)

The third term in (9.36) is the variation with the bulk metric itself δgAB = hAB.
Calculating this is straightforward, and the result is

{
δQAB

δgCD
δgCD

}
0
=

1
2
[£nhAB]+2khAB. (9.40)

The last variation we must consider is with respect to the brane matter fields, which
is trivial: {

δQAB

δTCD
δTCD

}
0
= κ2

5

(
TAB −

1
3

T qAB

)
. (9.41)

So, we have the final result that

δQ±
AB =

{
2qC

AqD
B∇C∇Dξ +

1
2
[£nhAB]±2khAB +κ2

5

(
TAB −

1
3

T qAB

)}±

0
= 0.

(9.42)

If we take the trace of δQ±
AB = 0, we obtain

qAB∇A∇Bξ± = 1
6κ

2
5 T±. (9.43)

These are the equations of motion for the brane-bending degrees of freedom in our
model, which are seen to be directly sourced by the matter fields on each brane.

9.3.4 Converting the Boundary Conditions into Distributional
Sources

We can incorporate the boundary conditions δQ±
AB = 0 directly into the hAB equa-

tion of motion as delta-function sources. This is possible because the jump in the
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normal derivative of hAB appears explicitly in the perturbed junction conditions. This
procedure gives

Δ̂AB
CDhCD − μ̂2hAB = −2(GMa)2κ2

5

[
Σ bulk

AB + ∑
ε=±

δ (y− yε)Σ ε
AB

]
. (9.44)

Here, we have defined

μ̂2 = −(GMa)2

[
£2

n +
2κ2

5

3 ∑
ε=±

λ εδ (y− yε)−4k2

]
,

Σ±
AB =

(
T±

AB − 1
3 T±qAB

)
+

2

κ2
5

qC
AqD

B∇C∇Dξ±. (9.45)

If we integrate the wave equation (9.44) over a small region traversing either brane,
we recover the boundary conditions (9.42).

Together with the gauge conditions,

nAhAB = qAC∇AhCB = 0 = qABhAB, (9.46)

equations (9.43) and (9.44) are the equations governing the perturbations of our
model.

9.4 Kaluza–Klein Mode Functions

The metric fluctuation hAB is governed by a system of partial differential equations
(PDEs). As is common in all areas of physics, the best way to solve such equations
is via a separation of variables. In this section, we separate the y variables from the
conventional Schwarzschild variables on Σy. The part of the graviton wave function
corresponding to the extra dimension satisfies an ODE boundary value problem,
which implies that there is a discrete spectrum for hAB.

9.4.1 Separation of Variables

As mentioned above, we have that

[Δ̂AB
CD,£n]hCD = 0; (9.47)

i.e., Δ̂AB
CD is independent of y when evaluated in the (t,r,θ ,φ ,y) coordinates. This

suggests that we seek a solution for hAB of the form

hAB = Zh̃AB, μ̂2Z = μ2Z, (9.48)



9 Gravitational Waves from Braneworld Black Holes 359

where,
0 = £nh̃AB and 0 = qA

B∇AZ; (9.49)

that is, Z is an eigenfunction of μ̂2 with eigenvalue μ2. The existence of the delta
functions in the μ̂2 operator means that we need to treat the even and odd parity
solutions of this eigenvalue problem separately.

9.4.2 Even Parity Eigenfunctions

If Z(−y) = Z(y), we see that Z satisfies the following equations in the interval y ∈
[0,d]:

m2Z(y) = −a2(y)(∂ 2
y −4k2)Z(y),

0 = [(∂y +2k)Z(y)]±,

μ = GMm. (9.50)

There is a discrete spectrum of solutions to this eigenvalue problem that are labeled
by the positive integers n = 1,2,3 . . .:

Zn(y) = α−1
n [Y1(mn�)J2(mn�ek|y|)− J1(mn�)Y2(mn�ek|y|)], (9.51)

where αn is a constant, and mn = μn/GM is the nth solution of

Y1(mn�)J1(mn�ekd) = J1(mn�)Y1(mn�ekd). (9.52)

There is also a solution corresponding to m0 = μ0 = 0, which is known as the zero
mode:

Z0(y) = α−1
0 e−2k|y|, α0 =

√
�(1− e−2kd)1/2. (9.53)

Hence, there exists a discrete set of solutions for bulk metric perturbations of the

form h(n)
AB = Zn(y)h̃

(n)
AB(zα). When n > 0 these are called the Kaluza–Klein (KK)

modes of the modes, and the mass of any given mode is given by the mn eigenvalue.
The αn constants are determined from demanding that {Zn} forms an orthonormal
set

δmn =
∫ d

−d
dya−2(y)Zm(y)Zn(y). (9.54)

These basis functions then satisfy:

δ (y− y±) =
∞

∑
n=0

a−2Zn(y)Zn(y±). (9.55)

This identity is crucial to the model—inspection of (9.44) reveals that the brane
stress-energy tensors appearing on the right-hand side are multiplied by one of δ (y−
y±). Hence, brane matter only couples to the even parity eigenmodes of μ̂2.
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Case 1: Light Modes

It is useful to have simple approximate forms of the Kaluza–Klein masses and nor-
malization constants for the formulae that appear later on. There are straightforward
to derive for modes that are ‘light’ compared to mass scale set by the AdS5 length
parameter:

mn� � 1. (9.56)

Let us define a set of dimensionless numbers xn by:

xn = mn�ekd . (9.57)

Then for the light modes, we find that xn is the nth zero of the first-order Bessel
function:

J1(xn) = 0. (9.58)

Also for light modes, the normalization constants reduce to

αn ≈ 2
√

�e2kd |J0(xn)|/πxn, n > 0. (9.59)

Actually, it is more helpful to know the value of the KK mode functions at the
position of each brane. We can parameterize these as

Zn(y±) =
√

ke−kdz±n , n > 0. (9.60)

For the light Kaluza–Klein modes, the dimensionless z±n are given by

z±n ≈
{
|J0(xn)|−1

einπ

}
. (9.61)

Case 2: Heavy Modes

At the other end of the spectrum, we have the heavy Kaluza–Klein modes

mn� � 1. (9.62)

Under this assumption, we find2

xn ≈ nπ
1− e−kd , (9.63a)

Zn(y) ≈

√
ke−k|y|

ekd −1
cos

[
nπ

ek|y| −1
ekd −1

]
, (9.63b)

z±n ≈ 1√
1− e−kd

{
ekd/2

einπ

}
. (9.63c)

2 Strictly speaking, an asymptotic analysis leads to formulae with n replaced by another integer
n′ on the right-hand sides of (9.63). However, we note that for even parity modes, n counts the
number of zeroes of Zn(y) in the interval y ∈ (0,d), which allows us to deduce that n′ = n.
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Unlike the analogous quantities for the light modes, z±n shows an explicit depen-
dence on the dimensionless brane separation d/�.

9.4.3 Odd Parity Eigenfunctions

As mentioned above, brane matter only couples to Kaluza–Klein modes with even
parity. But a complete perturbative description must include the odd parity modes
as well; for example, if we have matter in the bulk distributed asymmetrically with
respect to y = 0 (i.e., T L

AB �= T R
AB) modes of either parity will be excited. Hence, for

the sake of completeness, we list a few properties of the odd parity Kaluza–Klein
modes here.

Assuming Z(−y) = −Z(y), we have:

m2Z(y) = −a2(y)(∂ 2
y −4k2)Z(y),

0 = Z(y+) = Z(y−).
(9.64)

Again, we have a discrete spectrum of solutions, this time labeled by half integers:

Zn+ 1
2
(y) = α−1

n+ 1
2

[
Y2(mn+ 1

2
�)J2(mn+ 1

2
�ek|y|)− J2(mn+ 1

2
�)Y2(mn+ 1

2
�ek|y|)

]
. (9.65)

The mass eigenvalues are now the solutions of

Y2(mn+ 1
2
�)J2(mn+ 1

2
�ekd) = J2(mn+ 1

2
�)Y2(mn+ 1

2
�ekd). (9.66)

Proceeding as before, we define

xn+ 1
2

= mn+ 1
2
�ekd . (9.67)

For light modes with mn+ 1
2
� � 1, xn+ 1

2
is the nth zero of the second-order Bessel

function:
J2(xn+ 1

2
) = 0. (9.68)

Taken together, (9.58) and (9.68) imply the following for the light modes:

m1 < m3/2 < m2 < m5/2 < · · · ; (9.69)

i.e., the first odd mode is heavier than the first even mode, etc.
Finally, we note that since the odd modes vanish at the background position of

the visible brane, it is impossible for us to observe them directly within the context
of linear theory. This can change at second order, since brane bending can allow us
to directly sample regions of the bulk where Zn+ 1

2
�= 0. However, this phenomenon

is clearly beyond the scope of this paper.
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9.5 Recovering 4-Dimensional Gravity

Let us now describe the limit in which we recover general relativity. We assume
there are no matter perturbations in the bulk and on the hidden brane; hence, we may
consistently neglect the odd parity Kaluza–Klein modes. By virtue of the brane-
bending equation of motion (9.43), we can consistently set ξ− = 0. Furthermore,
(9.55) can be used to replace the delta function in front of Σ+

AB in (9.44). We obtain,

Δ̂AB
CDhCD − μ̂2hAB = −2(GM)2κ2

5Σ
+
AB

∞

∑
n=0

Zn(y+)Zn(y). (9.70)

We now note that for e−kd � 1,

Z0(y+) =
√

k(1− e−2kd)−1/2 � Zn(y+), n > 0. (9.71)

That is, the n > 0 terms in the sum are much smaller than the 0th order contribution.
This motivates an approximation where the n > 0 terms on the right-hand side of
(9.70) are neglected, which is the so-called ‘zero-mode truncation’.

When this approximation is enforced, we find that hAB must be proportional to
Z0(y); i.e., there is no contribution to hAB from any of the KK modes. Hence, we
have μ̂2hAB = 0. The resulting expression has trivial y dependence, so we can freely
set y = y+ to obtain the equation of motion for hAB at the unperturbed position of
the visible brane:

Δ̂AB
CDh+

CD = −2(GM)2κ2
5Σ

+
ABZ2

0(y+) (9.72)

But we are not really interested in h+
AB, the physically relevant quantity is the per-

turbation of the induced metric on the perturbed brane, which is defined as the
variation of

q+
AB = [gAB −nAnB]+. (9.73)

We calculate δq+
AB in the same way as we calculated δQ±

AB above (except for the
fact that qAB shows no explicit dependence on T +

AB):

δq+
AB =

{
δqAB

δΦ
δΦ+

δqAB

δnC
δnC +

δqAB

δgCD
δgCD

}+

0
. (9.74)

These variations are straightforward, and we obtain

δq+
AB ≡ h̄+

AB = h+
AB +2kξ+q+

AB − (nA∇B +nB∇A)ξ+, (9.75)

where all quantities on the right are evaluated in the background and at the unper-
turbed position of the brane. Note that h̄ABnA �= 0, which reflects the fact that nA is
no longer the normal to the brane after perturbation.

We now define the 4-tensors

h̄+
αβ = eA

αeB
β h̄+

AB, T +
αβ = eA

αeB
βT +

AB. (9.76)
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Here, h̄+
αβ is the actual metric perturbation on the visible brane. Note that this per-

turbation is neither transverse or tracefree:

∇γ h̄+
γα = 2k∇αξ+, gαβ h̄+

αβ = 8kξ+. (9.77)

We can now re-express the equation of motion (9.72) in terms of h̄+
αβ instead of h+

AB
using (9.75). Dropping the + superscripts, we obtain

∇γ∇γ h̄αβ +∇α∇β h̄γγ −∇γ∇α h̄βγ −∇γ∇β h̄αγ

= −2Z2
+κ2

5

[
Tαβ −

1
3

(
1+

k

2Z2
+

)
T γ

γgαβ

]
+(6k−4Z2

+)∇α∇βξ , (9.78)

where we have defined

Z2
+ = Z2

0(y+) = k(1− e−2kd)−1. (9.79)

In obtaining this expression, we have made use of the ξ equation of motion:

gαβ∇α∇βξ = 1
6κ

2
5 gαβTαβ . (9.80)

Note that we still have the freedom to make a gauge transformation on the brane
that involves an arbitrary 4-dimensional coordinate transformation generated by ηα :

h̄αβ → h̄αβ +∇αηβ +∇βηα . (9.81)

We can use this gauge freedom to impose the condition

∇β h̄βα − 1
2∇α h̄ββ = (2Z2

+ −3k)∇αξ . (9.82)

Then, the equation of motion for 4-metric fluctuations reads

∇γ∇γ h̄αβ +2Rα
γ
β
δ h̄γδ = −16πG

[
Tαβ −

(
1+ωBD

3+2ωBD

)
T γ

γgαβ

]
, (9.83)

where we have identified

ωBD =
3
2
(e2d/�−1), G =

κ2
5

8π�(1− e−2d/�)
. (9.84)

We see that (9.83) matches the equation governing gravitational waves in a Brans-
Dicke theory with parameter ωBD. Hence in the zero-mode truncation, the pertur-
bations of the black string braneworld are indistinguishable from a 4-dimensional
scalar–tensor theory.

Note that (9.83) must hold everywhere in our model, so we can consider the
situation where our solar system is the perturbative brane matter located somewhere
in the extreme far-field region of the black string. The forces between the various
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celestial bodies will be governed by (9.83) in the Rαβγδ ≈ 0 limit. In this scenario,
solar system tests of general relativity place bounds on the Brans–Dicke parameter,
and hence d/�:

ωBD � 4×104 ⇒ d/� � 5. (9.85)

This lower bound on the dimensionless brane separation will be an important factor
in the discussion below.

9.6 Beyond the Zero-Mode Truncation

In this section, we specialize to the situation where there is perturbative matter lo-
cated on one of the branes and no other sources. Unlike Sect. 9.5, our interest here
is to predict deviations from general relativity, so we will not use the zero-mode
truncation. Just as in 4-dimensional black-hole perturbation theory, we introduce
the tensor spherical harmonics to further decompose the equations of motion for a
given KK mode into polar and axial parts.

9.6.1 KK Mode Decomposition

To begin, we make the assumptions

Σ bulk
AB = 0, and Σ+

AB = 0 or Σ−
AB = 0; (9.86)

i.e., we set the matter perturbation in the bulk and one of the branes equal to zero.
Note that due to the linearity of the problem we can always add up solutions cor-
responding to different types of sources; hence, if we had a physical situation with
many different types of matter, it would be acceptable to solve for the radiation
pattern induced by each source separately and then sum the results.

We decompose hAB as

hAB =
κ2

5 (GM)2

C
eαA eβB

∞

∑
n=0

Zn(y)Zn(y±)h(n)
αβ . (9.87)

Here, C is a normalization constant (to be specified later) with dimensions of

(mass)−4, and the expansion coefficients h(n)
αβ are dimensionless. We define a di-

mensionless brane stress–energy tensors and brane-bending scalars by

Θ±
αβ = C eA

αeB
βT±

AB, ξ̃± =
C ξ±

(GM)2κ2
5

. (9.88)
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Omitting the ± superscripts, we find that the equation of motion for h(n)
αβ is

(GM)2
[
∇γ∇γh

(n)
αβ +2Rα

γ
β
δh(n)

γδ

]
−μ2

n h(n)
αβ

= −2
(
Θαβ − 1

3Θgαβ
)
−4(GM)2∇α∇β ξ̃ , (9.89)

while the equation of motion for ξ̃ is

∇α∇αξ̃ = 1
6Θ . (9.90)

We also have the conditions

∇αh(n)
αβ = ∇αΘαβ = 0 = gαβh(n)

αβ . (9.91)

Note that in all of these equations, all 4-dimensional quantities are to be calculated
with the Schwarzschild metric gαβ . In particular,Θ = gαβΘαβ .

9.6.2 The Multipole Decomposition

In addition to the decomposition of hAB in terms of KK mode functions, the symme-
try of the background geometry dictates that we decompose the problem in terms of
spherical harmonics:

ξ̃ =
∞

∑
l=0

l

∑
m=−l

Ylmξ̃lm, (9.92a)

h(n)
αβ =

∞

∑
l=0

l

∑
m=−l

10

∑
i=1

[Y (i)
lm ]αβ h(nlm)

i , (9.92b)

Θαβ =
∞

∑
l=0

l

∑
m=−l

10

∑
i=1

[Y (i)
lm ]αβ Θ

(lm)
i . (9.92c)

Here, [Y (i)
lm ]αβ are the tensorial spherical harmonics in four dimensions, which are

the same quantities that appear in conventional black-hole perturbation theory. The
tensor harmonics depend only on the angular coordinates Ω = (θ ,φ), while the
expansion coefficients depend on t and r:

ξ̃lm = ξ̃lm(t,r), h(nlm)
i = h(nlm)

i (t,r), Θ (lm)
i =Θ (lm)

i (t,r). (9.93)

To define the tensor harmonics, first define the orthonormal 4-vectors

tα = f−1/2∂t , rα = f 1/2∂r, θα = r−1∂θ , φα = (r sinθ)−1∂φ . (9.94)

The we define

γαβ = gαβ + tα tβ − rαrβ = θαθβ +φαφβ , tαγαβ = rαγαβ = 0, (9.95)
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which is the projection tensor onto the 2-spheres of constant r and t, and the anti-
symmetric tensor εαβ = −εβα

εαβ = θαφβ −φαθβ . (9.96)

Using these objects, the [Y (i)
lm ]αβ are defined in Table 9.1.3

Notice that we have divided the ten tensor harmonics into two groups labeled
‘polar’ and ‘axial’. This division is based on how they transform under the parity,
or space-inversion, operation r → −r. In particular, under this type of operation,
polar objects acquire a (−1)l factor, while axial quantities transform as (−1)l+1.4

It is useful to re-write the spherical harmonic decomposition of h(n)
αβ in terms of

explicitly polar and axial parts:5

h(n)
αβ =

∞

∑
l = 0

l

∑
m = −l

7

∑
i = 1

P
ilm
αβ (Ω)P

(n)
ilm(t,r)

︸ ︷︷ ︸
polar contribution h(n,polar)

αβ

+
∞

∑
l = 0

l

∑
m = −l

3

∑
i = 1

A
ilm
αβ (Ω)A

(n)
ilm (t,r)

︸ ︷︷ ︸
axial contribution h(n,axial)

αβ

.(9.97)

In this expression and similar ones below, there is no summation over the spherical
harmonic or i index unless indicated explicitly.

It is easy to confirm that the parity operation commutes with the Δ̂AB
CD and μ̂2

operators in (9.44), or conversely commutes with the operator δ γαδδβ ∇
λ∇λ +2Rαγβ

δ

in (9.89). Therefore, solutions of (9.89) that are eigenfunctions of the parity operator
with different eigenvalues are decoupled from one another; i.e., we can solve for

the dynamics of h(n,polar)
αβ and h(n,axial)

αβ individually. As is common for spherically
symmetric systems, modes with different values of l and m are also decoupled.

Table 9.1 The spherical tensor harmonics [Y (i)
lm ]αβ

Index i Polar harmonics P
ilm
αβ Axial harmonics A

ilm
αβ

1 f−1tα tβYlm 2 f−1/2t(αεβ )γ∇γYlm

2 2t(α rβ )Ylm 2 f +1/2r(αεβ )γ∇γYlm

3 f rα rβYlm γγ(αεβ )δ∇δ∇γYlm

4 −2t(αγβ )γ∇γYlm · · ·
5 +2r(αγβ )γ∇γYlm · · ·
6 r−2γαβYlm · · ·
7 γαγ γβδ∇γ∇δYlm · · ·

3 The definition of tensor harmonics is not unique; there are numerous other conventions in the
literature.
4 Alternatively, we can note that any tensor harmonic whose definition involves the pseudo-tensor
εab is automatically an axial object.
5 A similar decomposition forΘαβ also exists.
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Before moving on, we should mention that the decomposition of the brane-
bending scalar ξ̃ is given entirely in terms of Ylm; i.e., it is an explicitly polar quan-
tity. It follows that ∇α∇β ξ̃ is also a polar quantity, which means that the brane-
bending contribution in (9.89) only sources polar GW radiation.

9.7 Homogeneous Axial Perturbations

In this section, we present the equations of motion for the axial moments of h(n)
αβ in

the absence of all matter sources. As mentioned above, the brane-bending contri-
bution to (9.89) is a polar quantity. Therefore, the axial GW modes are completely
decoupled from the brane-bending scalar. Hence, the equation we try to solve in this
section is simply:

(GM)2
[
∇γ∇γh

(nlm,axial)
αβ +2Rα

γ
β
δh(nlm,axial)

γδ

]
−μ2

n h(nlm,axial)
αβ = 0, (9.98)

where the total axial contribution to h(n)
αβ is

h(n,axial)
αβ =∑

lm

h(nlm,axial)
αβ . (9.99)

In addition to this equation, remember that we also need to satisfy the gauge condi-
tions (9.91).

Notice that (9.98) reduces to the graviton equation of motion in ordinary GR for
mn = 0, which corresponds to n = 0. It turns out that the n = 0 case must be handled
separately from the n ≥ 0 case due to an enhanced gauge symmetry present in the
zero-mode sector. Therefore, for the purposes of this section we always assume
n ≥ 0.

9.7.1 High Angular Momentum l ≥ 2l ≥ 2l ≥ 2 Radiation

In Table 9.1, notice that the axial harmonics are identically equation to zero for l = 0.
Also note that for l = 1, the third harmonic vanishes A

3lm
lm = 0. This means that there

are no axial harmonics for l = 0 and that l = 1 is a special case. In this subsection,
we concentrate on the l ≥ 2 situation, where all of the axial tensor harmonics are
non-trivial.

The decomposition of h(nlm,axial)
αβ explicitly reads

h(nlm,axial)
αβ = A

1lm
αβ (Ω)A

(n)
1lm(t,r)+A

2lm
αβ (Ω)A

(n)
2lm(t,r)+A

3lm
αβ (Ω)A

(n)
3lm(t,r).

(9.100)
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When this is substituted into the equation of motion (9.98) and gauge conditions
(9.91), we get four PDEs that must be satisfied by the three expansion coefficients.
These four equations are not independent, however, as the time derivative of one
of them is a linear combination of the other three. Removing this equation, it is

possible to use one of the other PDEs to algebraically eliminate A
(n)

1lm from the other
two equations. Defining the ‘master variables’

unlm(t,r) = f (r)A (n)
2lm(t,r), vnlm(t,r) = r−1A

(n)
3lm(t,r), (9.101)

we eventually find that

0 =
(
∂ 2

∂ t2 − ∂ 2

∂ r2∗

)(
unlm

vnlm

)
+Vnl

(
unlm

vnlm

)
. (9.102)

Here, Vnl is a potential matrix, given by

Vnl = f

⎛
⎜⎝

5 f
r2 +

f ′′

2
− 2 f ′

r
+

l(l +1)−1
r2 +m2

n
f ′[2− l(l +1)]

2r
4
r2

f ′

r
+

l(l +1)−2
r2 +m2

n

⎞
⎟⎠ , (9.103)

and the well-known tortoise coordinate is defined by

r∗ = r +2GM ln
( r

2GM
−1

)
. (9.104)

Hence, to be able to describe homogeneous axial perturbations of the black string
braneworld, one needs to specify initial data for unlm and vnlm, solve the coupled
wave equations (9.102), and then use the definitions (9.101) to obtain the original

expansion coefficients A
(n)

2lm and A
(n)

3lm. The last step is to integrate one of the original
equations of motion,

∂A
(n)

1lm

∂ t
= f 2 ∂A

(n)
2lm

∂ r
+

f (2 f + f ′r)
r

A
(n)

2lm +
f [l(l +1)−2]

2r2 A
(n)

3lm, (9.105)

to obtain the other expansion coefficient A
(n)

1lm. This procedure can be repeated for
each individual value of n, l, and m. However, it should be noted that since the po-
tential matrix does not explicitly depend on m, solutions that share the same values
of n and l only really differ from one another by the choice of initial data.

Why are we interested in solving homogeneous problems like the one presented
in this section? Recall that in the case of 4-dimensional black-hole perturbation
theory, the numeric solution of the homogeneous axial wave equation lead to the
discovery of quasinormal modes. In other words, by examining the solutions of
equations such as (9.102), one can learn a lot about the characteristic behavior of
a system when perturbed away from equilibrium, which is what we shall do in
Sect. 9.7.3. The solution of the homogeneous problem can also have some direct
observational significance, since it can describe how the system settles down into
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its equilibrium state after some event. That is, we expect the late-time axial gravi-
tational wave signal from a black string to be described by the solutions of (9.102)
after a black string is formed or undergoes some traumatic event.

Before moving on, it is worthwhile to note the asymptotic behavior of the poten-
tial matrix:

lim
r∗→−∞

Vnl = 0, lim
r→+∞

Vnl =
(

m2
n +O(r−1) O(r−3)
O(r−2) m2

n +O(r−1)

)
. (9.106)

For r∗ → −∞, which corresponds to the black-hole horizon, we see that unlm and
vnlm behave as free massless scalars. Conversely, far away from the black hole they
behave as decoupled scalars of mass mn. It turns out that the asymptotic form of Vnl

as r → ∞ is crucial in determining the characteristic GW signal from a black string,
as we will see below.

9.7.2 Axial p-Waves

For the sake of completeness, we can write down the equations of motion governing
the l = 1, or p-wave, sector. In this case, general fluctuations are described by

h(n1m,axial)
αβ = A

1,1,m
αβ (Ω)A

(n)
1,1,m(t,r)+A

2,1,m
αβ (Ω)A

(n)
2,1,m(t,r). (9.107)

In this case, when we substitute this into the equation of motion (9.98), we find a
single master equation

0 = (∂ 2
t −∂ 2

r∗)un1m +Vn1un1m, (9.108)

where
un1m(t,r) = f (r)A (n)

2,1,m(t,r), (9.109)

and the potential is

Vn1 = f

(
5 f +1

r2 − 2 f ′

r
+

f ′′

2
+m2

n

)
. (9.110)

Once this equation is solved and A
(n)

2,1,m is found, the remaining expansion coefficient
is determined by a quadrature:

∂A
(n)

1,1,m

∂ t
= f 2

∂A
(n)

2,1,m

∂ r
+

f (2 f + f ′r)
r

A
(n)

2,1,m. (9.111)

Notice that this is identical to (9.105) with l = 1.
One comment on the l = 1 perturbations is in order before we proceed. In or-

dinary black-hole perturbation theory, there are no truly time-dependent p-wave
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perturbations of the Schwarzschild spacetime. This is because the l = 1 perturba-
tions correspond to giving the black hole a small amount of angular momentum
about some axis in 3-space; i.e., they represent the linearization of the Kerr solution
about the Schwarzschild background and are hence time independent. In the black
string case, however, the l = 1 perturbation can be viewed as endowing a small spin
to the Schwarzschild 4-metrics on each Σy hypersurface. However, the amount of
spin delivered to each hypersurface by each massive mode is not uniform, in fact it
is easily shown that it is proportional to Zn(y) evaluated at that hypersurface. In other
words, dipole perturbations give rise to a differentially rotating black string, where
the amount of rotation varies with y. It turns out that there is no time-independent
black string solution of this type, so we have dynamic perturbations. The exception
is the zero mode n = 0, which gives rise to a uniform rotation of the black string;
i.e., these perturbations give rise to the linearization of (9.18) about (9.15).

9.7.3 Numeric Integration of Quadrupole Equations

In Fig. 9.2, we present the results of some numerical solutions of (9.102) for the
case of quadrupole radiation l = 2. In this plot, we assume that we have Gaussian

Fig. 9.2 Results of the integration of the quadropole axial equations of motion. The waveforms
are observed at r∗ = 100GM while the initial data was originally located at r∗ = 50GM. We show
results for the n = 0,1,2,3 modes. The massive mode signals are characterized by a long-lasting
oscillating tail; i.e., un2m and vn2m are proportional to (t/GM)−5/6 sin(mnt + φ) at late times for
n > 0 (here, φ is a phase angle). This is in contrast to the zero-mode result, which shows no
oscillations and a power-law decay at late times (the inset shows the zero-mode result on a log-log
scale)
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initial data for un2m on some initial time slice and that vn2m = 0 initially. It turns
out that the particular choice of initial data does not much affect the outcome of the
simulations; that is, changing the shape or location of the initial Gaussian, or taking
vn2m �= 0, results in very similar waveforms.

The key feature of the displayed waveforms is the nature of the late-time signal.
We see that each of the n > 0 waveforms exhibits very long-lived late-time oscil-
lations.6 This behavior is totally unlike the standard picture of black hole oscilla-
tions in GR, where one expects the late-time ringdown waveform to be a featureless
power-law tail. This kind of signal is exhibited by the n = 0 zero-mode signal, which
we already know corresponds exactly to the GR result. One of the most remarkable
things about the massive mode signal is that it is present for all types of initial data,
suggesting that it is a fundamental property of the black string as opposed to just
some simulation fluke. In this sense the massive mode tail observed here is analo-
gous to the quasinormal modes of standard 4-dimensional theory.

An exercise in curve fitting reveals that the late-time massive signal is well mod-
eled by {

un2m

vn2m

}
∼ const×

( t
GM

)−5/6
sin(mnt +φ). (9.112)

That is, the frequency of oscillation matches the mass of the mode. The decay rate
∼ t−5/6 is much slower than the decay of the zero-mode signal, which decays at
least as fast as t−4. We can confirm via simulations that these result holds for other
values of l. Hence, we are led to the following important conclusion: Irrespective
of the initial amplitudes of the various KK modes, if one waits long enough the
GW signal from a perturbed black string will be dominated by a superposition of
slowly-decaying massive modes. A challenge for gravitational wave astronomy is to
observe these massive mode signals directly. The actual prospects of doing this are
discussed in Sect. 9.10.4.

9.8 Spherical Perturbations with Source Terms

We can re-write the decomposition (9.113) by explicitly pulling out the spherical
contributions:

ξ̃ =
ξ (s)
√

4π
+

∞

∑
l=1

l

∑
m=−l

Ylmξ̃lm, (9.113a)

h(n)
αβ =

h(n,s)
αβ√
4π

+
∞

∑
l=1

l

∑
m=−l

10

∑
i=1

[Y (i)
lm ]αβ h(nlm)

i , (9.113b)

Θαβ =
Θ (s)
αβ√
4π

+
∞

∑
l=1

l

∑
m=−l

10

∑
i=1

[Y (i)
lm ]αβ Θ

(lm)
i . (9.113c)

6 A mathematical rationalization of this is given is Sect. 9.10.2.
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Here, ξ (s), h(n,s)
αβ , and Θ (s)

αβ represent the spherically symmetric parts of the brane-
bending scalar, metric perturbation, and brane stress–energy tensor, respectively. In
this section, we are going to concentrate on the dynamics of this sector when there
are non-trivial matter sources on one of the branes sourcing gravitational radiation.
The reason that we focus on the l = 0, or s-wave, sector is computational conve-
nience; the equations of motion become rather involved for higher multipoles.

Before starting to calculate things, we note that some readers may be a little con-
fused as to why we are even looking at spherically symmetric gravitational radia-
tion. In general relativity, it is a well-known consequence of Birkhoff’s theorem that
there is no spherically symmetric radiation about a Schwarzschild black hole. This is
because the theorem states that the only solutions to the Einstein equations with cos-
mological constant with structure R

2 × Sd are (d + 2)-dimensional Schwarzschild-
de Sitter or Schwarzschild anti-de Sitter black holes. Since these are static solutions,
any perturbation that respects the Sd symmetry of the background must also be
static.7 But the black string background has structure (R2 ×S2)×S/Z2. Birkhoff’s
theorem does not apply in this case and we can indeed have time-dependant so-
lutions of GAB = 6k2gAB with the same structure. Therefore, it is possible to have
dynamical spherically symmetric radiation around a black string, which is what we
study in this section.

9.8.1 Spherical Master Variables

We write the l = 0 contribution to the metric perturbation as

h(n,s)
αβ = H1 tα tβ −2H2 t(αrβ ) +H3 rαrα +Kγαβ , (9.114)

where the 4-vectors and γαβ are defined in (9.94) and (9.95), respectively. Each of
the expansion coefficients is a function of t and r; i.e., Hi = Hi(t,r) and K = K(t,r).
Notice that the condition that h(n,s)

αβ is tracefree implies

K = 1
2 (H1 −H3). (9.115)

Before going further, it is useful to define dimensionless coordinates:

ρ =
r

GM
, τ =

t
GM

, x = ρ+2ln
(ρ

2
−1

)
. (9.116)

Then, when our decompositions (9.113) are substituted into the equations of mo-
tion, we find that all components of the metric perturbation are governed by master
variables

ψ =
2ρ3

2+μ2
nρ3

(
ρ
∂K
∂τ

− f H2

)
, ϕ = ρ

∂ξ (s)

∂τ
. (9.117)

7 Static here means that one can find a gauge in which the perturbation does not depend on time.



9 Gravitational Waves from Braneworld Black Holes 373

Both ψ = ψ(τ,x) and ϕ = ϕ(τ,x) satisfy simple wave equations:

(∂ 2
τ −∂ 2

x +Vψ)ψ = Sψ + Î ϕ, (9.118a)

(∂ 2
τ −∂ 2

x +Vϕ)ϕ = Sϕ . (9.118b)

The potential and matter source terms in the ψ equation are:

Vψ =
f

ρ3 (2+ρ3μn
2)2

[
μn

6ρ9 +6μn
4ρ7 −18μn

4ρ6

−24μn
2ρ4 +36μn

2ρ3 +8
]
,

(9.119a)

Sψ =
2 fρ3

3(2+μ2
nρ3)2

[
ρ(2+μ2

nρ3)∂τ(2Λ1 +3Λ3)

+6(μ2
nρ3 −4) fΛ2

]
.

(9.119b)

Here, we have defined the following three scalars derived from the dimensionless

stress–energy tensorΘ (s)
αβ :

Λ1 = −Θ (s)
αβgαβ , Λ2 = −Θ (s)

αβ tαrβ , Λ3 = +Θ (s)
αβ γ

αβ . (9.120)

The potential and source terms in the brane-bending equation are somewhat less
involved:

Vϕ =
2 f
ρ3 , Sϕ =

ρ f
6
∂τΛ1. (9.121)

Finally, the interaction operator is

Î =
8 f

(2+μ2
nρ3)2

[
6 fρ2∂ρ +(μ2

nρ3 −6ρ+8)
]
. (9.122)

9.8.2 Inversion Formulae

Assuming that we can solve the wave equations (9.118) for a given source, we
need formulae that allow us to express Hi, K in terms of ψ and ϕ in order to
make gravitational wave prediction. This can be derived by inverting the master
variable definitions (9.117) with the aid (9.118). The general formulae are actu-
ally very complicated and not particularly enlightening, so we do not reproduce
them here. Ultimately, to make observational predictions it is sufficient to know
the form of the metric perturbation far away from the black string and the matter
sources, so we evaluate the general inversion formulae in the limit of ρ → ∞ and
with Λi = 0:
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∂τH1 =
1
ρ

[(
∂ 2
τ +

3
ρ
∂ρ +μ2

n

)
ψ+

4
μ2

n

(
∂ 2
τ −

1
ρ
∂ρ

)
ϕ

]
,

H2 =
1
ρ

[(
∂ρ +

2
ρ

)
ψ+

4
μ2

n

(
∂ρ −

1
ρ

)
ϕ

]
,

∂τH3 =
1
ρ

[(
∂ 2
τ +

1
ρ
∂ρ

)
ψ+

4
μ2

n

(
∂ 2
τ −

2
ρ
∂ρ

)
ϕ

]
,

∂τK =
1
ρ

[(
1
ρ
∂ρ +

μ2
n

2

)
ψ+

4
μ2

nρ

(
∂ρ −

1
ρ

)
ϕ

]
. (9.123)

Note that these do not actually complete the inversion; in most cases, a quadrature
is also required to arrive at the final form of the metric perturbation.

9.8.3 The Gregory–Laflamme Instability

We now discuss one extremely important consequence of the equation of motion
(9.118). Note that we can always add-on a solution of the homogeneous wave
equation:

0 = (∂ 2
τ −∂ 2

x +Vψ)ψ, (9.124)

to any particular solution ψp of (9.118a) generated by a given source. If we analyze
this homogenous equation in Fourier space by setting ψ(τ,x) = eiωτΨ(x), we find
that

ω2Ψ = −d2Ψ
dx2 +VψΨ . (9.125)

This is identical to the time-independent Schrödinger equation from elementary
quantum mechanics with ω2 playing the role of the energy parameter. Now, sup-
pose that the potential supports a bound state solution with negative energy ω2 < 0.
That is, suppose we can find a solution of this ODE with Ψ → 0 as x → ±∞ with
ω =−iΓ , where Γ > 0. In such cases, ψ ∝ eΓ t and we have an exponentially grow-
ing solution to the equations of motion, which represents a linear instability of the
system. Since such a tachyonic mode ψ is spatially bounded and arbitrary small in
the past, it is possible for any initial data with compact support to excite it.

Clearly, the black string braneworld cannot be a viable black-hole model if we
can find such a tachyonic mode. It turns out that the potential Vψ (9.119a) is not
actually capable of supporting a negative energy bound state for all values of μ .
There are numerous ways of demonstrating this; including the WKB method and
direct numeric solution of (9.125). One finds that no bound state exists if

μn > μc ≈ 0.4301 or μn = 0. (9.126)
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That is, the zero-mode of the s-wave sector is stable,8 and the high-mass modes are
also stable. This implies that the black string braneworld is perturbatively stable if
the smallest KK mass satisfies

μ1 = GMm1 > μc ≈ 0.4301. (9.127)

Under the approximation that the first mode is light (x1e−kd � 1) and using G =
�Pl/MPl, this gives a restriction on the black string mass

M
MPl

� �

�Pl

μc

x1
ekd , (9.128)

or equivalently,
M

M�
� 8×10−9

(
�

0.1 mm

)
ed/�. (9.129)

If we take � = 0.1 mm, then we see that all solar mass black holes will in actuality
be stable black strings provided that d/� � 19. The stability of the black string
braneworld is summarized in Fig. 9.3.

Before moving on, we have two final comments: First, we should note that all
black strings are unstable if the distance between the branes becomes large d → ∞.
This essentially means that there is no stable black string solution when the extra
dimension is infinite. This is the well-known Gregory–Laflamme instability of black
strings [7, 8]. Second, if we denote the minimum mass stable black string to be MGL

for a given d/�, note that we do note claim that black holes with M < MGL do not
exist in this braneworld setup. Rather, such small mass black holes are not described
by the black string bulk. They would instead be described by some localized black

Fig. 9.3 The stability of the black string braneworld model. If the black string mass M, or the
brane separation d is selected such that GM/� and d/� lies outside of the ‘unstable configurations’
configurations portion of parameter space, the model is stable. We have also indicated the d/� � 5
limit imposed by the low-energy scalar-tensor limit of the model in the solar system (cf. Sect. 9.5)

8 One can show that this is actually a gauge mode
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hole solution that has yet to be obtained. It has been suggested in the literature
that the transition between the localized black hole and the black string may be a
violent first-order phase transition, an hence be a significant source of gravitational
radiation [12].

9.9 Point Particle Sources on the Brane

Up until this point, we have either been discussing homogenous equations or generic
sources. As an illustration of a more specific application of the formulae we have
derived, we specialize to the situation where the perturbing brane matter is a ‘point
particle’ located on one of the branes. Our goal is to explicitly write down the equa-
tions of motion for the GWs emitted by the particle. This is a situation of a sig-
nificant astrophysical interest in 4-dimensions, because it is thought to be a good
model of ‘extreme-mass-ratio-inspirals’ (EMRIs). This is a scenario when an ob-
ject of mass Mp merges with a black hole of mass M. When Mp � M, it is a good
approximation to replace the small body with a point particle, or delta-function,
source. Our interest here is to generalize this standard 4-dimensional calculation to
the black string background.

One caution is in order before we proceed: It is not entirely clear that the delta-
function approximation is a good one to make in the braneworld scenario. In 4 di-
mensions, there are only two length scales in the problem: the two Schwarzschild
radii 2GM and 2GMp.9 Hence, an extreme scenario is well defined when one scale
is much larger than the other. However, in the braneworld scenario there is an addi-
tional length scale �. In typical situations, � � 2GMp � 2GM. It is unclear whether
or not it is valid to model the perturbing body as a point particle in this case, since
a point particle always has a physical size less than �. However, it the absence of a
better source model, we will pursue the point particle description here, while always
keeping this caveat in mind.

9.9.1 Point Particle Stress–Energy Tensor

We take the particle Lagrangian density to be

L ±
p =

Mp

2

{∫ δ 4(zμ − zμp )√−q
qαβ

dzαp
dη

dzβp
dη

dη

}±

. (9.130)

In this expression, η is a parameter along the particle’s trajectory as defined by the
qαβ metric, zμp are the four functions describing the particle’s position on the brane,

9 We generally consider cases where the physical size of the perturbing particle is close to its
horizon radius, as for neutron stars, etc.
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and Mp is the particle’s mass parameter. Using (9.13), we find the stress–energy
tensor

T±
αβ = Mp

{∫ δ 4(zμ − zμp )√−q
qαρqβλ

dzρp
dη

dzλp
dη

dη

}±

. (9.131)

The contribution from the particle to the total action is

S±p =
1
2

∫

Σ±

L ±
p =

Mp

4

∫
q±αβ

dzαp
dη

dzβp
dη

dη . (9.132)

Varying this with respect to the trajectory zαp and demanding that η is an affine
parameter yields that the particle follows a geodesic along the brane:

d2zαp
dη2 +Γ α

βγ [q
±]

dzβp
dη

dzγp
dη

= 0, −1 = q±αβ
dzαp
dη

dzβp
dη

, (9.133)

where Γ α
βγ [q

±] are the Christoffel symbols defined with respect to the q±αβ metric.
We note that the above formulae make explicit use of the induced brane metrics

q±αβ . However, all of our perturbative formalism is in terms of the Schwarzschild
metric gαβ , especially the definition of the Λi scalars (9.120). Hence, it is useful to
translate the above expressions using the following definitions:

η = a±λ , uα =
dzαp
dλ

, −1 = gαβuαuβ . (9.134)

Then, the stress–energy tensor and particle equation of motion become

T±
αβ =

Mp

a±

∫ δ 4(zμ − zμp )√−g
uαuβ dλ , uα∇αuβ = 0. (9.135)

Note that the only difference between the stress–energy tensors on the positive and
negative tension branes is an overall division by the warp factor.

By switching over to dimensionless coordinates, transforming the integration
variable to τ from λ , and making use of the spherical harmonic completeness rela-
tionship, we obtain

T±
αβ =

f
C±Eρ2 uαuβ δ (ρ−ρp)

[
1

4π
+

∞

∑
l=1

l

∑
m=−l

Ylm(Ω)Y ∗
lm(Ωp)

]
. (9.136)

Here, we have defined

C± =
(GM)3

Mpeky±
, E = −gαβuαξβ(t), ξα(t) = ∂t . (9.137)

As usual, E is the particle’s energy per unit rest mass defined with respect to the
time-like Killing vector ξα(t).
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9.9.2 The sss-Wave Sector

Comparing (9.88) and (9.113c) with (9.136), we see that

Θ (s)
αβ =

f√
4πEρ2

uαuβ δ [ρ−ρp(τ)], (9.138a)

Λ1 =
f√

4πEρ2
δ [ρ−ρp(τ)], (9.138b)

Λ2 =
Eρ̇p√
4π fρ2

δ [ρ−ρp(τ)], (9.138c)

Λ3 =
f L̃2

√
4πEρ4

δ [ρ−ρp(τ)], (9.138d)

where ρ̇p = dρp/dτ . Here, we have identified L as the total angular momentum of
the particle (per unit rest mass), defined by

L2

r2 = γαβuαuβ , L̃ =
L

GM
. (9.139)

Note that for particles traveling on geodesics, E and L are constants of the motion.
These are commonly re-parameterized in terms of the eccentricity e and the semi-
latus rectum p, both of which are non-negative dimensionless numbers:

E2 =
(p−2−2e)(p−2+2e)

p(p−3− e2)
,

L̃2 =
p2

p−3− e2 .

(9.140)

The orbit can then be conveniently described by the alternative radial coordinate
χ , which is defined by

ρ =
p

1+ ecosχ
. (9.141)

Taking the plane of motion to be θ = π/2, we obtain two first-order differential
equations governing the trajectory

dχ
dτ

=

[
(p−2−2ecosχ)2(p−6−2ecosχ)

ρ4
p(p−2−2e)(p−2+2e)

]1/2

,

dφ
dτ

=

[
p(p−2−2ecosχ)2

ρ4
p(p−2−2e)(p−2+2e)

]1/2

. (9.142)
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These are well behaved thorough turning points of the trajectory dρp/dt = 0. When
e < 1 we have bound orbits such that p/(1+e) < ρp < p/(1−e), while for e > 1 we
have unbound ‘fly-by’ orbits whose closest approach is ρp = p/(1 + e). To obtain
orbits that cross the future event horizon of the black string, one needs to apply a
Wick rotation to the eccentricity e �→ ie and make the replacement χ �→ iχ +π/2.
Then a radially infalling particle corresponds to e = ∞.

It is worthwhile to write out the associated source terms in the wave equation
explicitly as a function of orbital parameters

Sψ =
2 f 2ρ̇p

3
√

4πE(2+μ2ρ3)

[
− (2ρ2 +3L̃2)δ ′[ρ−ρp(τ)]

+
6ρE2

f

(
μ2ρ3 −4
μ2ρ3 +2

)
δ [ρ−ρp(τ)]

]
,

Sϕ = − f 2ρ̇p

6
√

4πEρ
δ ′[ρ−ρp(τ)]. (9.143)

Note that

|ρ̇p| < f ,

ρ̇p = 0 ⇒ Sψ = Sϕ = 0,

E � 1 ⇒ Sψ � Sϕ .

(9.144)

Fig. 9.4 The steady-state KK gravitational wave signal induced by a particle undergoing a periodic
orbit around the black string with μ = 0.5. The orbit (bottom left) has eccentricity e = 0.5 and
angular momentum p = 3.62. The waveform of radiation falling into the black string is quite
different than that of radiation escaping to infinity: The infalling signal precisely mimics the orbital
profile of the source, while the outgoing signal is dominated by monochromatic radiation whose
frequency is proportional to the KK mass μ
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That is, the particle’s speed is always less than unity, the sources wave equation
vanish if the particle is stationary or in a circular orbit, and high-energy trajecto-
ries imply that the system’s dynamics are not too sensitive to brane-bending modes
ψ � ϕ .

Numeric solutions of the spherical equations of motion with a point particle
source have been obtained elsewhere [4]. A major consideration in performing such
simulations is that the sources in the save equations are distributional, and hence
must be regulated in some way. In [4], the authors regulated the delta-functions by
replacing them with thin Gaussians. In Fig. 9.4, we show the results of such a simu-
lation when the perturbing particle is undergoing a periodic orbit. One observes that
the GW signal for from the brane is essentially that of a pure massive mode signal.

9.10 Estimating the Amplitude of the Massive Mode Signal

We have seen in previous sections that if we consider a black string relaxing to
its equilibrium configuration or if we look at the GWs emitted by a small parti-
cle orbiting the black string, the signal is dominated by massive mode oscillations.
The question is: are these oscillations observable? The ability of a GW detector to
see a given signal depends on that signal’s frequency and its amplitude. The fre-
quency of massive mode signals is well defined, it is simply given by the solution
of the eigenvalue problem presented in Sect. 9.4. However, the amplitude is difficult
to pin down unless we consider a specific situation. So in this section, we con-
centrate on the s-wave massive modes emitted by a particle in orbit about a black
string. We will be interested in the entire massive mode spectrum; i.e., all values
of n. To estimate the GW amplitude associated with heavy modes we will need
to analyze the asymptotics of the Green’s function solution of the coupled wave
equations (9.118).

9.10.1 Green’s Function Analysis

The formal solution to the coupled wave equations (9.118) can be written in terms
of the Green’s functions

(∂ 2
τ −∂ 2

x +Vψ)G(τ;x,x′) = δ (τ)δ (x− x′), (9.145a)

(∂ 2
τ −∂ 2

x +Vϕ)D(τ;x,x′) = δ (τ)δ (x− x′). (9.145b)

To preserve casuality in the model, we demand that G and D satisfy retarded bound-
ary conditions. That is, they are identically zero if the field point (τ,x) is not con-
tained within thefuture light cone the source point (0,x′).
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In terms of these Green’s functions, we have

ψ(τ,x) = ψ1(τ,x)+ψ2(τ,x),

ψ1(τ,x) =
∫

dτ ′dx′ G(τ− τ ′;x,x′)Sψ(τ ′,x′),

ψ2(τ,x) =
∫

dτ ′dx′ G(τ− τ ′;x,x′)Î (τ ′,x′)ϕ(τ ′,x′),

ϕ(τ,x) =
∫

dτ ′dx′ D(τ− τ ′;x,x′)Sϕ(τ ′,x′). (9.146)

Note the decomposition of ψ into a contribution ψ1 from the matter source Sψ , and
a contribution ψ2 from from brane-bending ϕ . These expressions suggest that if we
knew the two Green’s functions explicitly, the gravitational wave master variable
and brane-bending scalar would be given by quadrature.

Unfortunately, G and D are not known in closed form, so we have to resort to
numeric computations to accurately calculate the values of ψ and ϕ induced by a
particular source, and for a particular choice of μ . However, any given source will
excite all the KK modes to some degree, so to rigourously model the spherical grav-
itational radiation we would need to do an infinite number of numeric simulations,
one for each discrete value of μ . This is not practical, so our goal here is to use the
asymptotic behavior of the propagators to determine the transcendental properties
of the emitted radiation and how these scale with the dimensionless Kaluza–Klein
mass.

9.10.2 Asymptotic Behaviour

In this subsection, we outline the behavior of the two retarded Green’s functions G
and D under the assumption that the the field point is deep within the future light
cone of the source point and is also far away from the string. This is the relevant
limit to take if we are interested in the ‘late-time’ gravitational wave signal seen by
distant observers.

9.10.2.1 Brane-Bending Propagator

First, consider the brane-bending Green’s function. Note that the brane-bending po-
tential Vϕ is identical to that for the l = 0 component of a spin-0 field propagating
in the Schwarzschild spacetime. This is because the brane-bending equation of mo-
tion (9.43) is essentially that of a massless Klein–Gordon field. Fortunately, this
propagator has been well studied in the literature, and one can show that

D(τ;x,x′) ∼ τ−3, τ � x′ − x > 0. (9.147)
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This result is most easily interpreted if one considers the initial value problem for ϕ .
That is, we switch off the source in (9.43) and prepare the field in some initial state
on a given hypersurface. Then, a distant observer measuring ϕ at late times would
see the field amplitude decay in time as a power law with exponent −3.

9.10.2.2 Gravitational Wave Propagator

The retarded Green’s function for potentials similar to Vψ have also been considered
in the literature. It turns out that the asymptotic character of the potential is the
crucial issue. Koyama & Tomimatsu [13] have demonstrated that for potentials of
the form

Vψ
r−→
∞

μ2
n +O

(
1
r

)
, (9.148)

the Green’s function has the asymptotic form

G(τ;x,x′) ∼ μ−1/2
n τ−5/6 sin[μnτ+φ(τ)], τ � x′ − x > 0. (9.149)

The form of this Green’s function rationalizes the waveforms seen in Fig. 9.2, espe-
cially the t−5/6 envelope of the late-time signal, despite the fact that the governing
equations (9.102) were matrix valued. The key point is the asymptotic form of the
potential matrix (9.106), which says that far from the string the two degrees of free-
dom are decoupled and governed by a potential of the form (9.148).

Comparing this expression to the asymptotic form of D above, we see that G
decays much slower. This suggests that ψ1 � ψ2 at late times in (9.146); i.e., the
portion of the GW signal sourced directly by the stress–energy tensor dominates

the brane-bending contribution. Also note the overall μ−1/2
n scaling of the Green’s

function with the KK mass of the mode. We will use this below.

9.10.3 Application to the Point Particle Case for n � 1n � 1n � 1:
Kaluza–Klein Scaling Formulae

Let us now use the asymptotic Green’s functions in the case where the perturbing
matter is a point particle. Our goal is to estimate how the KK signal scales with n
for the high-mass KK modes.

When the matter stress–energy tensor has delta-function support, the
∫

dτ ′dx′ in-
tegrals in (9.146) reduce to line integrals over the portion of the particle’s worldline
inside of the past light cone. Now, working in the late time far-field limit, we know
that the brane-bending contribution to the signal is minimal. We also focus on the
high n modes; i.e.,

μn � 1. (9.150)



9 Gravitational Waves from Braneworld Black Holes 383

Concentrating on the direct signal produced by the particle, we see that the source
term Sψ for a point particle (see section 9.9.2) seems to scale as μ−2

n . However,
note that the source also involves the derivative of a delta function, which means we
must perform an integration by parts. This brings a derivative of G with respect to

time into the mix. Again assuming that μn � 1, we see ∂τG ∼ μ1/2
n eiμnτ . The net

result is that we expect

ψ ∝ μ−3/2
n , μn � 1. (9.151)

That is, all other things being equal, the spherical master variable for a given KK

mode scales as μ−3/2
n .

But this is not the entire solution to the problem, since we do not actually observe

ψ , we observe hAB. So we need to use the inversion formulae (9.123) to obtain h(n,s)
αβ

and then (9.87) to get the spherical part of hAB. The detailed analysis leads to the
following late-time/distant-observer approximation for the KK metric perturbations:

h(n,s)
AB ≈ hnF (t)sin(ωnt +φn) diag

(
0,+1,− 1

2 r2,− 1
2 r2 sin2 θ ,0

)
, (9.152)

where F (t) is a slowly varying function of time that depends on the details of the
initial data. The characteristic amplitudes hn are given by

hn =
√

8πA

(
2GMp

r

)(
2GM

�

)−1/2

Fn(d/�). (9.153)

Here, r is the distance between the observer and the string, and A is a dimensionless
quantity that depends on the orbit of the perturbing particle but not on n or any other
parameters; its value must be determined from simulations. Fn(d/�) is a complicated
expression involving Bessel functions with the following limiting behavior: When
the perturbing matter is on our brane

Fn(d/�) ≈
{

1
2 e−3d/2�(nπ3)1/2, n � 2ed/�/π2,

e−d/2�(nπ)−1/2, n � 2ed/�/π2.
(9.154a)

On the other hand, for particles on the shadow brane:

Fn(d/�) ≈
{

e−d/2�(π/2)1/2, n � 2ed/�/π2,

(nπ)−1/2, n � 2ed/�/π2.
(9.154b)

Finally, to a good approximation, the KK frequencies are given by

ωn = 2π fn ≈
c
�

(
n+ 1

4

)
πe−d/�. (9.155)

We note that even though these formulae were derived in the context of the large n
approximation, they are actually reasonable approximations to the small n case as
well.
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9.10.4 Observability of the Massive Mode Signal

We now have an expression (9.152) for the amplitude of the spherical massive
modes in terms of a parameter A that can be determined from simulations with
μn small. This amplitude varies with the type of orbit generating the GWs: it can be
O(10−6) or smaller for periodic orbits, or as high as O(1) for ‘zoom-whirl’ orbits.10

In Fig. 9.5, we plot the characteristic amplitudes hn as a function of their fre-
quency for a scenario where a 1.4M� object is orbiting a 10M� black string at a
distance of 1kpc away. Several general trends are obvious:

– The amplitude of the GW signal decreases with increasing brane separation d/�.
– The lowest frequency in the spectrum also decreases with increasing brane sepa-

ration d/�.
– For a source on the visible brane, the spectrum is peaked about a critical fre-

quency given by

fcrit =
1
π2�

∼ 304GHz

(
�

0.1mm

)−1

(9.156)

– When the perturbing particle is on the shadow brane, the spectrum is flat under-
neath the critical frequency fcrit

– In all cases, the signal from shadow particles is stronger than that of visible par-
ticles.

source on visible brane

source on shadow brane

Fig. 9.5 Characteristic amplitudes of KK radiation emitted by point particles on the visible brane
or the shadow brane as follows from (9.153). The particular parameters for this example are indi-
cated just above the plot. Also shown is a dimensionally reduced version of the characteristic strain
sensitivity of advanced LIGO for comparison

10 These are orbits where the particle comes in from infinity, is briefly captured by the black string,
and then escapes to infinity again.
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In general, the peak amplitude hmax is the one corresponding to the critical frequency
and is given by

hn ≤ hmax ∼ A
(

Mp
M�

)(
r

kpc

)−1 (
M

M�

)−1/2 (
�

0.1mm

)1/2

×
{

5.0×10−22e−(d−5�)/�, visible source,

9.1×10−21e−(d−5�)/2�, shadow source.
(9.157)

Figure 9.5 illustrates the main problem with observing the KK signal from a
black string. The frequencies in the KK spectrum are bounded below by

fn ≥ fmin ∼ 12GHz

(
�

0.1mm

)−1

e−(d−5�)/�. (9.158)

This implies that the KK spectrum is usually in a higher waveband that the op-
eration frequencies of LIGO and LISA, assuming that � � 50μm in line with cur-
rent experimental tests. The way to mitigate this is to push the branes farther apart,
which reduces fmin. But if one does this, the amplitude of the signal goes down ex-
ponentially. Clearly, the situation is much better for shadow particles, which have an
intrinsically stronger GW signal. The detailed prospects of observing massive mode
signal with realistic GW detectors is discussed in [4].

9.11 Summary and Outlook

In these lecture notes, we have introduced the black string braneworld, which is a
candidate model for a brane black hole in the Randall–Sundrum scenario. At the
background level, this model is indistinguishable from the Schwarzschild solution
to brane observers, so we need to examine the perturbations of the model to find
deviations from general relativity. We have developed the formalism necessary to
calculate the gravitational wave signals emitted from black strings perturbed away
from their equilibrium configurations. We have found that the late-time nature of
these signals is somewhat independent of the nature of the mechanism which gen-
erated them, and is a long-lived superposition of discrete monochromatic massive
modes. We have discussed how these massive modes could be produced by a point
particle orbiting a black string and estimated what their amplitude might be.

There are a number of open issues that need to be addressed in this model. So far,
we have only been able to estimate amplitudes by analyzing the scaling behavior of
Green’s functions and using point particle sources. We need to confirm our scaling
results with direct simulations and we need to move beyond the point particle ap-
proximation to model realistic sources with size larger than �. The phenomenon of
localized black–hole–black string transitions must be looked at in quantitative de-
tail. The possibility that such a phase transition can produce significant amounts of



386 S.S. Seahra

massive mode radiation and contribute to the gravitational wave background pro-
vides one of the best prospects for the actual detection of a black string.
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Chapter 10
Black Holes at the Large Hadron Collider

P. Kanti

Abstract In these two lectures, we will address the topic of the creation of small
black holes during particle collisions in a ground-based accelerator, such as LHC,
in the context of a higher-dimensional theory. We will cover the main assumptions,
criteria and estimates for their creation, and we will discuss their properties after
their formation. The most important observable effect associated with their creation
is likely to be the emission of Hawking radiation during their evaporation process.
After presenting the mathematical formalism for its study, we will review the current
results for the emission of particles both on the brane and in the bulk. We will finish
with a discussion of the methodology that will be used to study these spectra and
the observable signatures that will help us identify the black-hole events.

10.1 Introduction

These two lectures aim at offering an introduction to the idea that miniature black
holes may be created during high-energy particle collisions at ground-based collid-
ers. This scenario can only be realised in the context of higher-dimensional theories,
i.e. theories that postulate the existence of additional spacelike dimensions in na-
ture. An introduction to the two most important versions of these theories, namely
the scenario with large extra dimensions and the one with warped extra dimensions,
will be our starting point.

We will then proceed to introduce the idea of the possible creation of black holes
at the laboratory. We will present some simple but illuminating geometrical criteria
for this to happen. We will then discuss the boundary value problem whose solution
determines whether a black hole has been formed out of two colliding particles. Cer-
tain aspects of the creation process will be studied in more detail, namely the amount
of energy that is absorbed by the created black hole and the value of the production
cross-section. We will finally discuss the properties of the produced black holes,
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such as the horizon value, temperature and lifetime, and compare with the ones of
their four-dimensional analogues. The non-vanishing, in general, temperature of the
black hole is associated with the emission of a thermal type of radiation from the
black hole, i.e. the Hawking radiation. This has its source at the creation of a virtual
pair of particles outside the horizon of the black hole (or, equivalently, the quantum
tunnelling of a particle from within the black-hole horizon). We will finish our first
lecture with a brief outline of the mathematical formalism that was developed for
the study of the Hawking radiation.

The emission of Hawking radiation, i.e. of elementary particles with a thermal
spectrum, takes place during the two intermediate phases in the life of a black hole.
These are the spin-down phase and the Schwarzschild phase, in chronological or-
der. Starting from the second, which has the simplest gravitational background, we
will present a review of the results that have been derived in the literature related
to the form of the radiation spectra and their most characteristic features, including
their dependence on the dimensionality of spacetime and the relative emissivities
of different species of fields. A similar task will then be taken for the spin-down
phase during which the black hole carries a non-vanishing angular momentum. In
this case, the radiation spectra will have an extra dependence on the angular mo-
mentum parameter of the black hole, as well as an angular distribution in space due
to the existence of a preferred direction in space, that of the rotation axis. The most
important part, from the phenomenological point of view, will be the emission of the
black hole directly on the brane on which the standard model particles and the ob-
servers themselves are located. However, the bulk emission will also be considered
as this will determine the amount of energy remaining for emission on the brane.

Having completed the theoretical study of the radiation spectra from a higher-
dimensional black hole, we now need to address the question of what information
we may deduce from these spectra, if one day we manage to detect them, and in what
way. Certain properties of the produced black hole such as the mass and temperature
need to be determined first. From these, one may then turn to the derivation of more
fundamental parameters such as the dimensionality of the gravitational background,
or even the value of the fundamental Planck scale and the cosmological constant.
As we will see, this task is highly non-trivial and demands the close cooperation of
theoretical studies and experimental skill. But if it works, it might provide answers
to the most fundamental questions in theoretical physics.

10.2 Creation of Black Holes and Their Properties

During the first lecture, we will set the stage for the production and subsequent
detection of higher-dimensional black holes. After a brief introduction to models
with extra dimensions, we will discuss the possibility of the creation of a black hole
during a particle collision and address certain questions related to this phenomenon.
We will then turn to the evaporation process of the black hole, and we will briefly
present the mathematical formalism for the study of the Hawking radiation.



10 Black Holes at the Large Hadron Collider 389

10.2.1 Extra Dimensions

It is an amazing feature of the theory of general relativity that it can be straight
forwardly extended to an arbitrary number of dimensions. Its main mathematical
construction, Einstein’s field equations

Gμν = Rμν −
1
2

gμν R = κ2 Tμν , (10.1)

is expressed in terms of second-rank tensors whose indices can take any values, de-
pending on our assumptions for the dimensionality of spacetime, without its mathe-
matical consistency to be in any danger. It comes therefore as no surprise that, only
a few years after Einstein formulated his theory of gravity, Kaluza produced a grav-
itational model in five dimensions. The model was soon supplemented with further
suggestions about the topology of the extra dimension by Klein, and it was the first
attempt ever to derive a unification theory in which gravity played the fundamental
role.

Klein pictured the extra spacelike dimension introduced by Kaluza as a regu-
lar, compact one with finite size R. To avoid any conflicts with observational data,
the size of the extra dimension was assumed to be much smaller than any observ-
able length scale. The idea was extensively used decades later in the formulation of
string theory: there, the size of the additional six spacelike dimensions, necessary
for the mathematical and physical consistencies of the theory, was assumed to be
R = lP = 10−33 cm. However, all traditional ideas about the structure, size and use
of the extra space radically changed in the 1990s. The start was made in the context
of string theory, where the idea [1–4] that the string scale does not necessarily need
to be tied to the Planck scale, MP � 1019 GeV, was put forward. This soon led1 to
the construction of two, much simpler but extremely rich from the phenomenolog-
ical point of view, gravitational models: the scenario with Large Extra Dimensions
[10–12] and the one with Warped Extra Dimensions [13, 14].

The topological structure of the higher-dimensional spacetime in each case is
shown in Figs. 10.1(a,b). In the scenario with Large Extra Dimensions, depicted in
Fig. 10.1(a), a four-dimensional brane is embedded in a (4 + n)-dimensional flat
space with (3+1) non-compact and n spacelike compact dimensions. All ordinary
matter, made up of and interacting through standard model (SM) fields, is localised
on the brane and experiences gravitational forces that become strong at Planck scale.
On the other hand, gravitons, and possibly scalars or other fields not carrying any
charges under the SM gauge group, can propagate in the full spacetime. The higher-
dimensional, fundamental theory has a new scale for gravity, M∗, that is related to
the effective four-dimensional one through the equation [10–12]

M2
P � R n M2+n

∗ . (10.2)

1 For some early attempts to construct higher-dimensional gravitational models, see [5–9].
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Gravitons
and Scalars

(M*)

SM fields
(MP)

y y = 0 y = L

ΛB< 0

MP MEW

(a) (b)

Fig. 10.1 (a) A 3-brane embedded in a (4+n)-dimensional flat spacetime. (b) Two 3-branes em-
bedded in a five-dimensional anti-de Sitter spacetime

According to the above equation, if R � lP, the fundamental scale for gravity M∗
can be significantly lower than the four-dimensional one. By inverting the above
relation and using the definition GD = 1/Mn+2

∗ for the fundamental gravitational
constant, we find that

G4 R n � GD . (10.3)

This means that while, for r � R, the Newtonian potential between two masses m1

and m2 is given by the well-known four-dimensional formula

V (r) = G4
m1m2

r
, (10.4)

for r � R, the corresponding potential is now not only a higher-dimensional one
but a much stronger one for the same masses m1 and m2 and is written as

V (r) = GD
m1m2

rn+1 . (10.5)

In the case of the scenario with Warped Extra Dimensions, shown in Fig. 10.1(b),
a four-dimensional brane is embedded in the higher-dimensional spacetime which
now is five dimensional. The extra spacelike dimension is generically non-compact
but it may be compactified at will if a second brane is introduced in the model. The
visible brane, where all SM fields live, is placed at a finite distance y = L from the
hidden brane located at y = 0. If all fundamental scales at the hidden brane are of
the order of M∗, then it may be shown that the electroweak symmetry breaking in
the visible brane takes place at a scale [13, 14]

MEW = e−kL M∗ , (10.6)

where k is the curvature scale associated with the negative cosmological constant
that fills the five-dimensional spacetime of the model. The effective Planck scale
MP is now related to the fundamental one M∗ through the equation
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M2
P =

M3
∗

k
(1− e−2kL) . (10.7)

In both scenarios, a low-scale gravitational theory can be realised in the context
of the higher-dimensional model. As we will see, this will have important conse-
quences for the creation and evaporation processes of black holes in these theo-
ries. In these lectures, we will concentrate on the scenario with Large Extra Di-
mensions; however, many of the arguments and results that will be presented hold
for the scenario with Warped Extra Dimensions, too, under the assumption that the
AdS radius 1/k is much larger than the horizon radius rH of the corresponding
black holes.

10.2.2 Creation of Black Holes

A summary of the most important – experimental, astrophysical and cosmological –
limits on the fundamental energy scale M∗ is presented in Table 10.1. From its en-
tries one may see that, in general, the constraints become more relaxed as the num-
ber of additional spacelike dimensions increases. The most optimistic case is the one
where the higher-dimensional Planck scale M∗ is very close to the TeV scale – this
case is still viable; however, one needs to introduce at least three additional space-
like dimensions. In this version of the model the hierarchy between the gravitational
and the electroweak scales almost disappears. What is more important, the scale
of quantum gravity, where gravitational and SM interactions become of the same
magnitude, approaches the energy scale where present-day and future experiments
operate. As a result, if M∗ is of the order of a few TeV, then collider experiments
with E > M∗ can probe the strong gravity regime and may witness the creation of
heavy, extended objects!

Table 10.1 Current limits on the fundamental energy scale

Type of experiment/analysis M∗ ≥ M∗ ≥

Collider limits on the production
of real or virtual KK gravitons [15–17]

1.45 TeV (n = 2) 0.6 TeV (n = 6)

Torsion-balance experiments [18, 19] 3.2 TeV (n = 2) (R ≤ 50μm)

Overclosure of the Universe [20] 8 TeV (n = 2)

Supernovae cooling rate [21, 22, 24] 30 TeV (n = 2) 2.5 TeV (n = 3)

Non-thermal production of KK modes [25] 35 TeV (n = 2) 3 TeV (n = 6)

Diffuse gamma-ray background [20, 26, 27] 110 TeV (n = 2) 5 TeV (n = 3)

Thermal production of KK modes [27] 167 TeV (n = 2) 1.5 TeV (n = 5)

Neutron star core halo [28–30] 500 TeV (n = 2) 30 TeV (n = 3)

Time delay in photons from GRBs [31] 620 TeV (n = 1)

Neutron star surface temperature [28–30] 700 TeV (n = 2) 0.2 TeV (n = 6)

BH absence in neutrino cosmic rays [32] 1–1.4 TeV (n ≥ 5)
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The following question therefore arises naturally: can we then produce a black
hole in a collider experiment on our brane? The idea was put forward in [33] very
soon after the formulation of the two aforementioned models with extra dimensions.
In there, it was argued that during a high-energy scattering process with E > M∗
and impact parameter b between the colliding particles, the following two cases
should be expected: (i) if b > rH(E), elastic and inelastic processes will take place,
dominated by the exchange of gravitons, while (ii) if b < rH(E), a black hole will be
formed according to the Thorne’s Hoop Conjecture2 [34] and the colliding particles
will disappear for ever behind the event horizon. In the above conjecture, rH(E)
is the Schwarzschild radius that corresponds to the centre-of-mass energy E of the
colliding particles.

Since gravity is higher dimensional, every gravitational object, including the pro-
duced black hole, will be generically higher dimensional. We thus expect the black
hole not only to form on but also to extend off our brane. Under the assumption
that the produced black hole has a horizon radius rH much smaller than the size
of the extra dimensions R – a case that can be indeed realised as we will see in
the next section, it may be assumed that it lives in a spacetime with (4 + n) non-
compact dimensions. The simplest such black hole is the spherically symmetric,
neutral, higher-dimensional one described by the Schwarzschild–Tangherlini line
element [36]

ds2 = −
[

1−
( rH

r

)n+1
]

dt2 +
[

1−
( rH

r

)n+1
]−1

dr2 + r2dΩ 2
2+n , (10.8)

where dΩ 2
2+n is the line element of a (2+n)-dimensional unit sphere

dΩ 2
2+n = dθ 2

n+1 +sin2 θn+1

(
dθ 2

n +sin2 θn

(
· · ·+sin2 θ2 (dθ 2

1 +sin2 θ1 dϕ2) . . .
))

.

(10.9)

By applying the Gauss law in D = 4+n dimensions, we find for the horizon radius
the result [37]

rH =
1

M∗

(
MBH

M∗

) 1
n+1

(
8Γ ( n+3

2 )

(n+2)
√
π(n+1)

)1/(n+1)

. (10.10)

The above expression reveals the, by now, well-known result that, in an arbitrary
number of dimensions, the horizon radius of the black hole has a power-law de-
pendence on its mass MBH – the more familial linear dependence is restored if one
sets n = 0. More importantly, it is the fundamental Planck scale M∗ that appears
in the denominator instead of the four-dimensional one MP, a feature that will play

2 . . . which says that “A black hole is formed when a mass M gets compacted into a region whose
circumference in every direction is C ≤ 2πrH(E)”. A higher-dimensional version of this conjec-
ture was developed in [35] where the “circumference” was substituted by the “area” VD−3 of the
(D−3)-dimensional “surface” that now needs to be VD−3 ≤ GD M.
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Table 10.2 The values of the ratio xmin = E/M∗, necessary for the creation of a black hole, as a
function of n

n = 2 n = 3 n = 4 n = 5 n = 6 n = 7
xmin = 8.0 xmin = 9.5 xmin = 10.4 xmin = 10.9 xmin = 11.1 xmin = 11.2

an important role in deciding whether black holes may be created at high-energy
particle collisions.

Turning therefore to this question, the basic criterion for the creation of such a
black hole is [38] that the Compton wavelength λC = 4π/E of the colliding particle
of energy E/2 must lie within the corresponding Schwarzschild radius rH(E). By
using the expression for the horizon radius (10.10), the above relation becomes

4π
E

<
1

M∗

(
E

M∗

) 1
n+1

(
8Γ ( n+3

2 )

(n+2)
√
π(n+1)

)1/(n+1)

. (10.11)

This inequality can be solved to give the ratio xmin = E/M∗, necessary for the cre-
ation of the black hole. The results for xmin for various values of the number of extra
dimensions n are given in Table 10.2. From these, we conclude that the centre-of-
mass energy of the collision must be approximately one order of magnitude larger
than the fundamental Planck scale M∗. Note that if the factor 4π is left out, as it was
often done in earlier back-on-the-envelope calculations, the constraint on E comes
out to be much more relaxed, i.e. E ≥ M∗. As the maximum centre-of-mass energy
that can be achieved at the Large Hadron Collider at CERN is 14 TeV, it seems that a
window of approximately 5 TeV remains at our disposal to witness a strong gravity
effect such as the creation of a black hole.

Moving beyond the classical criterion (10.11) that allows for the formation of the
black hole, two basic questions arise next: (i) what part of the available centre-of-
mass energy E is absorbed inside the black hole and (ii) how likely is the creation of
a black hole at the first place. In order to answer these questions, we need to study
the details of the high-energy particle collision in a strong gravitational background.
A theory of quantum gravity could provide the answers; however, such a theory – in
a complete, consistent form – is still missing. Over the years the fast-moving, collid-
ing particles have been modelled by gravitational waves, shock waves, and strings
in the context of different theories such as general relativity (with or without quan-
tum mechanics) [39–51], string theory [52–57] and topological field theory [58].
The most widely established method is the use of the concept of the Aichelburg–
Sexl shock wave [59] that was developed more than 20 years ago in the context of
a four-dimensional gravitational theory. An Aichelburg–Sexl shock wave follows
from a Schwarzschild line element boosted along the z axis, with a Lorentz factor
γ = 1/

√
1−β 2. In the limit γ → ∞, the boosted line element becomes [45–47]

ds2 = −dudv+dx2 +dy2 +4μ ln(x2 + y2)δ (u)du2 , (10.12)
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with u = t − z, v = t + z and μ the particle’s energy. The above line element is
everywhere flat apart from the point u = 0 where a discontinuity arises. Therefore,
it describes a shock wave located at this point and moving along the +z axis at the
speed of light.

We now assume that two Aichelburg–Sexl waves, with their centres at u = 0 and
v = 0, are moving in opposite directions, one along the +z axis and the other along
the −z. Then, the two shock waves will collide at u = v = 0, as we may see in
Fig. 10.2. The points at regions I, II and III that lie away from the moving trajec-
tories and the collision point are flat; however, the region IV which forms after the
collision is highly non-linear and curved.3 If, at the union of the two shock waves,
a closed trapped surface (i.e. a closed two-dimensional spacelike surface on which
the outgoing orthogonal null geodesics have positive convergence [60]) or an ap-
parent horizon (that is, a closed trapped surface with exactly zero convergence) is
formed, then a black hole has been created – since according to the cosmic censor-
ship hypothesis, the apparent horizon either coincides with or lies inside the event
horizon [60].

The creation therefore of a black hole is nothing but a boundary value problem.
In D = 4 dimensions and for a head-on collision (b = 0), this problem can be solved
analytically. This task was performed by Penrose (1974, unpublished), more than 30
years ago, who found that an apparent horizon is indeed formed with an area equal
to 32πμ2. This can put a lower bound on the area of the event horizon and thus on
the black-hole mass as follows:

AH ≡ 4πr2
H ≥ 32πμ2⇒MBH ≡ rH

2
≥ 1√

2
(2μ) . (10.13)

From the above one may conclude that at least 71% of the initial energy E = 2μ
of the collision is trapped inside the black hole. Alternatively, one may compute
the amount of energy emitted in the form of gravitational waves during the violent
collision. This was done in [45–47] where it was found that that amount was of the
order of 16%, which raised the percentage of energy absorbed by the black hole to
84% of the initial energy E. In more recent years, numerical analyses, where one
[61, 62] or both [63] of the colliding bodies were assumed to be described by a black

Fig. 10.2 Two Aichelburg–
Sexl shock waves propagating
in opposite directions. The
two shock waves collide at
u = v = 0 and if a closed
trapped surface or an apparent
horizon is formed, a black
hole is created shock 2 shock 1 

IV

IIIII

I

u v

3 The task of finding the exact form of spacetime in region IV involves strong, and thus non-linear,
gravitational calculations; until today no answer – analytical or numerical – has been given to this
question.
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hole, have found that the percentage of energy lost in the form of gravitational waves
is in the area of 14%, which is in very good agreement with the results of [45–47].

In the brane-world scenario, the colliding particles need to enter the higher-
dimensional regime in order to create a black hole. In that case, every closed trapped
surface will be a (D−2) surface instead of a two-dimensional one. Nevertheless, the
same procedure for investigating the creation of a black hole can be followed in this
case, too. For a head-on collision, the corresponding boundary value problem can
be again solved analytically leading to [64]

MBH ≥ [0.71(forD = 4)−0.58(forD = 11)] (2μ) . (10.14)

Therefore, as the dimensionality D of spacetime increases, smaller and smaller black
holes will be created. On the other hand, if the collision is not head-on, i.e. b �= 0,
numerical means have to be used to find the solution of the problem. This was done
in [64–66] leading, respectively, to the results

– D = 4: b ≤ bmax � 0.8rH ,

– D = 4+n : b ≤ bmax � 3 2−(n+2)/(n+1) rH .

Thus, for a non-head-on collision, a black hole will be created if the impact parame-
ter is smaller than a fraction of the event horizon radius. This fraction is 0.8 in D = 4
and increases, reaching asymptotically unity, as D becomes larger.

The impact parameter can offer us a measure of how likely the creation of a
black hole is. For a high-energy collision with a non-zero impact parameter b, the
production cross-section is found by using the geometric limit:

σproduction � πb2 . (10.15)

According to the above, the cross-section for the production of black holes from two
fast-moving particles is assumed to be given by the classical formula for the “target”
area defined by the impact parameter. One might intuitively think that the formation
of a black hole at such high energies would be governed by quantum, rather than
classical, effects – in [67, 68], the argument that the production cross-section would
be suppressed by an exponential factor involving the Euclidean action of the sys-
tem was put forward. However, in subsequent studies [69–73] it was shown that the
creation of the black hole was a classically allowed process and not a quantum phe-
nomenon; the main contribution to the production cross-section is therefore given
by the classical expression (10.15), with the quantum corrections being indeed small
as in [67, 68].

Early studies used the approximate expression σproduction � πr2
H , but today a more

precise expression is needed. As we just saw, even in the D = 4 case, a black hole
will not be created unless the impact parameter is smaller than 0.8rH , a result that
leads to the more accurate estimate for the production cross-section: σproduction �
0.64(πr2

H). Nevertheless, we are not done: novel estimates for the production cross-
section have emerged from the study of [74], where the search for the creation of
a closed trapped surface was extended in the regime (u = 0, v > 0) and (u > 0,
v = 0), i.e. in the “future” of the collision point. This extension gave a boost to the
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Table 10.3 Black-hole production cross-section as a function of the dimensionality of spacetime
[74]

D 4 5 6 7 8 9 10 11

σproduction/(πr2
H) 0.71 1.54 2.15 2.52 2.77 2.95 3.09 3.20

production cross-section, since in cases where it was previously concluded that no
event horizon had been formed at the collision point, now such a surface was found
when the extended regime was used instead. Therefore, the state-of-the-art values
of the black-hole production cross-section are the ones given in Table 10.3 [74]. For
example, the D = 4 value of 0.64, in units of πr2

H , has increased to 0.71, with similar
or larger enhancements taking place for the other values of D, too.4

Focusing, for a moment, on the geometrical instead of the numerical factor in the
expression of the production cross-section, we may write

σproduction ∝ πr2
H ∼ 1

M2∗

(
E

M∗

)2/(n+1)

. (10.16)

The above expression gives the dependence of the production cross-section on the
centre-of-mass energy of the collision and reveals the enhancement of it with E, a
dependence that is not seen in any other SM or beyond the standard model process.5

The above expression is valid for the production of a black hole out of two ele-
mentary, non-composite particles (i.e. partons). The final result for the production
cross-section out of two accelerated composite particles, such as protons, follows
by properly summing over all pairs of partons that carry enough energy to produce
a black hole. This is finally given by [81, 82]

σ pp→BH
production =∑

i j

∫ 1

τm

dτ
∫ 1

τ

dx
x

fi(x) f j

(τ
x

)
σ i j→BH

production , (10.17)

where x is the parton-momentum fraction, τ = √
xi x j, and fi(x) are the so-called

parton distribution functions (PDFs) that determine the fraction of the centre-of-
mass energy that is carried by the partons.

4 We should note here that the use of the generalised uncertainty principle has shown to lead to an
increase in the minimum amount of energy needed for the creation of a black hole [75]. Similarly,
the production cross-section comes out to be suppressed if the charge of the colliding particles
exceeds a certain value [76], while the angular momentum of the black hole enhances σproduction
[77, 78]. Finally, if one assumes the existence of a non-Gaussian point in general relativity and thus
a running gravitational coupling, the black-hole production cross-section is greatly suppressed in
part of the parameter space [79].
5 For a black hole produced in a five-dimensional anti-de Sitter spacetime, the above result for the
production cross-section holds if we assume that rH � 1/k; on the other hand, if rH ≥ 1/k, then
the corresponding expression for the production cross-section is σproduction ∝ ln2 E [80].
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Summing over all possible pairs of partons gives another considerable boost to
the production cross-section. One could naively think that by increasing without
limit the available centre-of-mass energy E, one could create extremely energetic
pairs of partons each one of which would certainly create a black hole. However,
the parton distribution functions fi(x) decrease rapidly with the centre-of-mass en-
ergy E, and with them the amount of energy that is passed to (and retained by) the
partons. As a result, the production cross-section cannot be indefinitely increased.
Numerical calculations that take into account the compositeness of the acceler-
ated particles and the behaviour of PDFs have derived some indicative values for
σproduction [81, 82]. For example, if we assume that M∗ = 1 TeV and D = 10, then
the production cross-section for a black hole with MBH = 5 TeV turns out to be
σproduction ∼ 105 fb, while for a black hole with MBH = 10 TeV it is found that
σproduction ∼ 10 fb. For beyond the SM processes, the aforementioned values are
quite significant – in the first case, the value of σproduction amounts to one black
hole created per second! Whether LHC will indeed prove to be a black-hole factory
remains to be seen.

10.2.3 Black-Hole Properties

We now turn to the properties of the higher-dimensional black holes that may be
produced during trans-planckian particle collisions [83, 84]. We will use as a proto-
type for our discussion the spherically symmetric, neutral black hole described by
the Schwarzschild–Tangherlini line element (10.8). Let us start with the value of the
horizon radius – how big (or small) are actually these black holes? The value of rH

as a function of the mass of the black hole is given in (10.10). In order to derive
some realistic estimates, we assume again M∗ = 1 TeV and MBH = 5 TeV and cal-
culate the value of the horizon as a function of the number of extra dimensions n.
These values are presented in Table 10.4. From these we may easily conclude that,
in the presence of extra dimensions, in order to create a black hole we only need to
access subnuclear distances. To have a measure of comparison, let me note that, in
D = 4 with M∗ = MP � 1019 GeV, the same objective could only be achieved if the
two colliding particles came within a distance of 10−35 fm!

Drawing from our knowledge of their four-dimensional analogues, we expect
that these miniature black holes will go through the following stages during their
lifetime [81]. (i) The balding phase: the initially highly asymmetric black hole will

Table 10.4 Horizon radius and temperature of the Schwarzschild–Tangherlini black hole as a
function of the number of extra dimensions, for M∗ = 1 TeV and MBH = 5 TeV

n 1 2 3 4 5 6 7

rH (10−4 fm) 4.06 2.63 2.22 2.07 2.00 1.99 1.99

TH (GeV) 77 179 282 379 470 553 629
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shed all quantum numbers and multipole moments apart from its mass M, electro-
magnetic charge Q and angular momentum J – during this phase, we expect some
visible but mainly invisible energy emission. (ii) The spin-down phase: the black
hole will start losing its angular momentum via the emission of Hawking radiation
through mainly visible channels. (iii) The Schwarzschild phase: after its angular
momentum the black hole will now start losing its mass through the emission again
of Hawking radiation. (iv) The Planck phase: when the black-hole MBH approaches
M∗, it becomes a quantum object whose properties would follow only from a quan-
tum theory of gravity – possible scenarios for this phase are the emission of a few
energetic quanta leading to the complete evaporation of the black hole or the forma-
tion of a stable “quantum” remnant.

The emission of Hawking radiation [85] is sourced by the non-vanishing temper-
ature of the black hole. This is defined in terms of the black hole’s surface gravity k
as follows:

TH =
k

2π
=

1
4π

1√
|gtt grr|

(
d|gtt |

dr

)
r=rH

=
(n+1)
4π rH

. (10.18)

By using again, as an indicative case, the values M∗ = 1 TeV and MBH = 5 TeV, for
the fundamental Planck scale and black-hole mass, as well as the values of the hori-
zon radius rH given in Table 10.4, we may calculate the temperature of the black
hole in terms of the number of extra dimensions. These are also given in Table 10.4.
We observe that a higher-dimensional black hole, with mass in the range of values
that would allow it to be produced at LHC, comes out to have in addition a temper-
ature that would greatly facilitate its detection in present and future experiments –
unlike the large astrophysical black holes that are characterised by an extremely low
temperature and the majority of primordial black holes that have an extremely high
temperature. Finally, let us add that due to the emission of Hawking radiation, the
lifetime of a black hole is finite. In the case of a higher-dimensional black hole, this
quantity is given by [83]

τ(n+4) ∼
1

M∗

(
MBH

M∗

) (n+3)
(n+1)

> τ(4) . (10.19)

For the same values of M∗ and MBH , the typical lifetime of the black hole comes out
to be τ = (1.7− 0.5)× 10−26 s for n = 1− 7. In other words, the produced black
hole will evaporate instantly after its creation, and it will do so right in front of our
detectors.

That is why we need to study in the greatest possible detail the spectrum of
the Hawking radiation emitted by the black hole as this will probably be the main
observable effect associated with this gravitational object. Although a purely geo-
metrical property, the temperature of a black hole leads to the emission of thermal
radiation similar to that of a black body. The Hawking radiation [85] is therefore
a classical phenomenon but with a quantum origin, since classically nothing is al-
lowed to escape from within the black-hole horizon. The emission of radiation from



10 Black Holes at the Large Hadron Collider 399

a black hole, four-dimensional and high dimensional alike, can be realised through
the creation of a virtual pair of particles just outside the horizon; when the antiparti-
cle happens to fall inside the black hole, the particle can then propagate away from
the black hole whose mass has decreased due to the negative amount of energy it
received. The radiation spectrum is therefore a nearly black-body spectrum with
energy emission rate given by an expression of the form [85]

dE(ω)
dt

=
|A (ω)|2 ω

exp(ω/TH)∓1
dω
(2π)

. (10.20)

The quantity|A (ω)|2 appearing in the numerator is the absorption probability (or
greybody factor). Its presence is due to the fact that a particle, propagating in the
(4+n)-dimensional black-hole background, needs to escape the strong gravitational
field, which the black hole creates, to reach the asymptotic observer. In order to see
this, we may write the equation of motion of an arbitrary field in the aforementioned
background in the form of a Schrödinger-like equation

− d2Ψ
dr2∗

+V (r∗,n, l,ω,s, . . .)Ψ = ω2Ψ , (10.21)

in terms of the so-called tortoise coordinate dr∗ =
[
1−

( rH
r

)(n+1)
]−1

dr. The gravi-

tational barrier V (r∗,n, l,ω,s, . . .) will reflect some particles back to the black hole
while it will allow others to escape to infinity. The rate at which particles and there-
fore energy are “arriving” at the location of the asymptotic observer will thus be
proportional to the transmission (or, absorption, as we will shortly see) probability
and thus different from the one for the usual, flat-space blackbody radiation. How-
ever, the extra difficulty that the greybody factor introduces in the calculation of
the radiation spectrum is compensated by the following fact: the barrier, and conse-
quently the absorption probability, depends on a number of parameters that describe
both particle properties (spin s, energy ω , angular momentum numbers l,m, . . . ) and
spacetime properties (number of extra dimensions n, angular momentum of black
hole a, cosmological constant Λ , etc.). As a result, the Hawking radiation spectrum,
when computed, is bound to be a vital source of information on the emitted particles
and gravitational background.

But how does the radiation spectrum follow? For this, we need to do a quantum
field theory analysis in curved spacetime. The first step is to define a basis for our
fields: in the four-dimensional case, we write [86–88]

uωlm =
N
r

e−iωt eimϕ Sωlm(θ)Rωlm(r) , (10.22)

where N is a normalisation constant, (l, m) the angular momentum numbers with
|m| ≤ l and Sωlm(θ) the spherical harmonics. We also need to define the vacuum
state of the theory. The one that describes perfectly the Hawking radiation emission
process is the past Unruh vacuum |U−〉: this state has no incoming radiation from
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past null infinity J − (i.e. far away from the BH at some asymptotic initial time)
but modes can “come out” of the black hole.

The gravitational potential V that appears in the equation of motion of the field
propagating in the black-hole background has the form of a barrier: it is localised
and vanishes at both the horizon and infinity. At these two asymptotic regimes,
(10.21) can then be easily solved, and the radial part of the field assumes the forms

Rup
ωlm(r) ∼

{
eiωr∗ +Aup e−iωr∗ , r → rH

Bup eiωr∗ , r → ∞
. (10.23)

The solution is, as expected, a superposition of free plane waves, where the constants
Aup and Bup can be viewed as the reflection and transmission coefficients.

The fluxes of particles N and energy E emitted by the black hole and measured
by an observer at infinity are given by the vacuum expectation values of the ra-
dial component of the conserved current Jμ and the (tr)-component of the energy–
momentum tensor Tμν , respectively, evaluated at infinity [86, 87]:

d2

r2 dt dΩ

(
N
E

)
=

〈
U−

∣∣∣∣∣
(

Jr

T tr

)∣∣∣∣∣U−
〉
∞

. (10.24)

Using the asymptotic form (10.23) for the radial part of the field at infinity, and after
some algebra, we find

d2

dt dω

(
N
E

)
=

1
2π ∑l

Nl |Bup|2
exp(ω/TH)∓1

(
1
ω

)
, (10.25)

where Nl = 2l +1 is the multiplicity of states that have the same value of the angular
momentum number l, and the ±1 factor is a statistics factor for fermions and bosons,
respectively.

We note that in the numerator of the above expression, it is the transmission
probability |Bup|2 that appears, as expected. However, one may define an alternative,
but equivalent, basis, namely

Rin
ωlm(r) ∼

{
Bine−iωr∗ , r → rH

e−iωr∗ +Ain eiωr∗ , r → ∞
. (10.26)

This basis describes modes that originate not from the black hole but from the past
null infinity. Now, Ain and Bin can be viewed as the reflection and absorption coef-
ficients, respectively. As both sets of solutions satisfy the same radial equation, one
may easily show that the following relations hold:

1−|Ain|2 = |Bin|2 ≡ |Bup|2 = 1−|Aup|2 . (10.27)

From the above, we may easily conclude that the transmission probability |Bup|2
for the “up” modes originating from inside the black hole is equal to the absorption
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probability |Bin|2 for the “in” modes originating from past null infinity – we denote
these two quantities collectively as |A (ω)|2 and write

d2

dt dω

(
N
E

)
=

1
2π ∑l

Nl |A (ω)|2
exp(ω/TH)∓1

(
1
ω

)
. (10.28)

In the case of a rotating (Kerr) black hole, we may compute three rates: the emis-
sion rates of particles N and energy E and the rate of loss of the angular momentum
J of the black hole. These are given by the expressions

d2

r2 dt dΩ

( N
E
J

)
=

〈
U−

∣∣∣∣∣∣
( Jr

T tr

T r
ϕ

)∣∣∣∣∣∣U
−
〉
∞

. (10.29)

The asymptotic solutions for the radial part of the field for either the “up” modes or
the “in” modes propagating in a Kerr black-hole background are now given by

Rup
ωlm(r) ∼

{
eiω̃r∗ +Aup e−iω̃r∗ , r → rH

Bup eiωr∗ , r → ∞
(10.30)

and

Rin
ωlm(r) ∼

{
Bine−iω̃r∗ , r → rH

e−iωr∗ +Ain eiωr∗ , r → ∞
. (10.31)

In the above, the parameter ω̃ is defined as

ω̃ ≡ ω−mΩH = ω−m
a

r2
H +a2

, (10.32)

where ΩH is the angular velocity of the rotating black hole and a the angular mo-
mentum parameter to be defined later. By using as a basis the “up” modes, that, as
we saw, describe more accurately the Hawking radiation emission process, we find
the expressions

d2

dt dω

( N
E
J

)
=

1
2π ∑l,m

ω
ω̃

|Bup|2
exp(ω̃/TH)∓1

( 1
ω
m

)
. (10.33)

As in the non-rotating case, we also find that the following relations hold between
the coefficients of the asymptotic solutions (10.30) and (10.31) for the two sets of
modes

ω
ω̃
|Bup|2 = 1−|Aup|2≡1−|Ain|2 =

ω̃
ω

|Bin|2 , (10.34)

leading to the final, simpler formula for the three rates

d2

dt dω

( N
E
J

)
=

1
2π ∑l,m

|A (ω)|2
exp(ω̃/TH)∓1

( 1
ω
m

)
, (10.35)
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where now |A (ω)|2≡ = 1− |Aup|2≡1− |Ain|2. Let us also note that if ω̃ = ω −
mΩH < 0, then from (10.34) the reflection probabilities |Aup|2 and |Ain|2 can be
larger than unity – this happens only for modes with m > 0 and signals the effect of
superradiance [89], where the incident wave “steals” energy from the rotating black
hole and escapes with an amplitude larger than the original one.

Let us now introduce a number of additional, spacelike dimensions in our theory.
Surprisingly, not much changes in the functional form of the above formulae. The
emission rates for a higher-dimensional, rotating black hole will still be given by
expressions of the form [77, 78, 90–98]

d2

dt dω

( N
E
J

)
=

1
2π ∑

l,m, j...

|A (ω)|2
exp(ω̃/TH)∓1

( 1
ω
m

)
. (10.36)

Where does the difference from the four-dimensional case lie? To start with, the
temperature of the black hole will acquire an n-dependence. In addition, the equation
of motion of a given field is going to depend on the specific background; therefore,
the greybody factor |A (ω)|2 that follows by solving the corresponding equation
of motion is going to change too. Also, the symmetry and structure of the higher-
dimensional spacetime may introduce additional quantum numbers and/or change
the multiplicities of states that carry the same sets of quantum numbers.

Another important factor is whether we are considering emission of particles on
the brane or in the bulk. Unlike a purely four-dimensional black hole, a higher-
dimensional one can emit particles either in the “brane channel” or in the “bulk
channel”. The species of particles that can be emitted in the bulk are particles that
are allowed by the model to propagate in the higher-dimensional spacetime, namely
gravitons but also scalar fields that carry no quantum numbers under the SM gauge
group. These bulk modes “see” the full (4 + n)-dimensional gravitational back-
ground and they are invisible to us; therefore, any energy emitted in the bulk will be
interpreted as a missing energy signal for a brane observer. On the other hand, the
black hole can emit a variety of particles in the “brane channel”, namely fermions,
gauge bosons and Higgs-like scalars. These brane-localised modes “see” only the
projected-on-the-brane four-dimensional gravitational background and they are di-
rectly visible to a brane observer; as a result, they are the most interesting emission
channel to study from the phenomenological point of view.

10.3 Hawking Radiation Spectra and Observable Signatures

Having discussed the properties of the miniature black holes that may be cre-
ated during a high-energy particle collision in the context of a low-scale higher-
dimensional gravitational theory, we now proceed to discuss in more detail the spec-
tra of the Hawking radiation emitted by these black holes and the information on
particle and spacetime properties that we may deduce from them.
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10.3.1 The Schwarzschild Phase on the Brane

As we mentioned in the previous section, a black hole emits Hawking radia-
tion during the two intermediate phases of its life, namely the spin-down and the
Schwarzschild phases. We will start from the latter one, which although follows the
spin-down phase was the first one to be studied due to the simpler form of the line
element that describes the gravitational background around it. This is given by the
Schwarzschild–Tangherlini solution (10.8) and describes, as we have seen, a spher-
ically symmetric, neutral black hole that has lost all of its angular momentum. For
the purpose of studying the emission of Hawking radiation directly on the brane, we
will be interested in the brane-localised modes that “see” only the projected-on-the-
brane background. In order to derive the latter, we fix the values of all the additional
θi coordinates, with i = 2, . . . ,n+1, introduced to describe the additional spacelike
dimensions, to π

2 . Then, the resulting brane background assumes the form

ds2
4 = −

[
1−

( rH

r

)n+1
]

dt2 +
[

1−
( rH

r

)n+1
]−1

dr2 + r2 dΩ 2
2 . (10.37)

The above line element describes a four-dimensional black-hole background on the
brane which, although resembles a Schwarzschild background, is distinctly different
as it carries a non-trivial n-dependence. The horizon radius is still given by (10.10)
and its temperature by (10.18) – note that both the horizon radius and the black-hole
temperature follow from geometrical arguments involving only the gtt and grr metric
components, and these are not affected by the projection of the (4+n)-dimensional
line element onto the brane.

However, the different form of the gravitational background is bound to change
the equation of motion of the relevant species of particles, and thus the value of the
greybody factor |A (ω)|2. In order to study in a combined way the behaviour of
fields with spin s = 0,1/2 and 1, a “master” equation of motion with s appearing as
a parameter was derived in [84, 90, 91]. For this, we used a factorised ansatz for the
wavefunction of the field of the form

Ψs = e−iωt eimϕ Δ−s Rs(r)Sm
sl(θ) (10.38)

and employed the Newman–Penrose method [99, 100] that combines multi-component
fields with curved gravitational backgrounds. Then, two decoupled equations, one
for the radial function Rs(r) and one for the spin-weighted spherical harmonics
[101] Sm

sl(θ), were derived having the form

Δ s d
dr

(
Δ 1−s dRs

dr

)
+

[
ω2r2

h
+2iωsr− isωr2h′

h
−λsl

]
Rs(r) = 0 (10.39)

and

1
sinθ

d
dθ

(
sinθ

dSm
sl

dθ

)
+

[
−2mscotθ

sinθ
− m2

sin2 θ
+ s− s2 cot2 θ +λsl

]
Sm

sl(θ) = 0 , (10.40)
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respectively. In the above, we have defined the function Δ ≡ r2 h≡ r2
[
1−

( rH
r

)n+1
]
,

while λsl = l(l + 1)− s(s−1) is the eigenvalue of the spin-weighted spherical har-
monics. The above equations resemble the ones derived by Teukolsky [102, 103] in
the background of a purely four-dimensional black-hole background and differ only
in the expressions of the functions h(r) and Δ(r).

The radial equation, from where the value of the greybody factor will follow, may
be solved either analytically or numerically. If the analytic approach is chosen [90,
91], an approximation method must be followed according to which (i) we solve
the equation of motion in the near-horizon (NR) regime (r � rH ) where it takes the
form of a hypergeometric equation, (ii) then we solve the equation of motion in the
far-field (FF) regime (r � rH ) where it takes the form of a confluent hypergeometric
equation and (iii) finally, we match the two asymptotic solutions in an intermediate
zone to guarantee the existence of a smooth solution over the whole radial regime.
Once the solution for the radial function Rs(r) is found, we compute the absorption
probability (we use the “in” modes as a basis) through the formula

|A (ω)|2 ≡ 1−|R(ω)|2 ≡ Fhorizon

Finfinity
, (10.41)

where R(ω) is the reflection coefficient and F the flux of energy towards the black
hole.

Whereas the absorption probability is a dimensionless quantity varying between
0 and 1 (in the non-rotating case), a dimensionful quantity may be constructed out
of it, namely the absorption cross-section, which is measured in units of the horizon
area (πr2

H ) and is defined as [104]

σabs(ω) =∑
l

πr2
H

(ωrH)2 (2l +1) |A (ω)|2 . (10.42)

By following the approximate method, described above, to solve the radial equation,
one may compute the absorption probability and from that the absorption cross-
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Fig. 10.3 Absorption cross-section for brane-localised fermions evaluated analytically (left plot)
and numerically (right plot)
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section. As an indicative case, in Fig. 10.3(left plot) we present the result for σabs(ω)
for the case of fermions propagating in the projected-on-the-brane black-hole back-
ground. As we observe, the horizontal axis does not extend to large values of the
energy parameter ωrH ; the reason for this is that during the matching of the two
asymptotic solutions, the assumption was made that ωrH � 1, which inevitably re-
stricts the validity of the analytic result to small values of the energy. Therefore,
the behaviour of σabs(ω), or A (ω), for arbitrary values of the energy can only be
derived if numerical techniques are employed [105] for the solution of the radial
equation. Then, the plot appearing in Fig. 10.3(right plot) can be constructed. The
qualitative agreement between the two plots is obvious and one can see that the
low-energy behaviour of σabs(ω) is accurately reproduced by the analytic result.
However, as ωrH increases, deviations start appearing. To complete the picture, in
Figs. 10.4 we present the behaviour of the absorption cross-section for scalars and
gauge bosons [105], respectively. What is important in the behaviour of σabs(ω) is
that (a) it behaves differently for each species of fields and (b) has a rather strong
dependence on the number of spacelike dimensions that exist transversely to the
brane.

When the (numerically) computed absorption probability and the temperature of
the black hole are substituted in the formula for the energy emission rate, we obtain
the radiation spectrum [105] that, for the indicative case of fermions, is depicted in
Fig. 10.5. The different curves on the plot stand for the differential energy emission
rates per unit time and unit frequency for the cases with n = 0,1,2,4 and 6 (from bot-
tom to top). We may easily observe that the energy emission rate is greatly enhanced
by the number of extra spacelike dimensions, a result that also holds for scalars and
gauge bosons. In order to derive the total emissivity, i.e. the energy emitted over the
whole frequency regime per unit time, we integrate over ωrH . The results for all
species of brane-localised fields are presented in the first three rows of Table 10.5.
From there, we may see that the total emissivity for the SM fields is enhanced up to
three or four orders of magnitude with the number of extra dimensions.
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Table 10.5 Total emissivities for brane-localised scalars, fermions and gauge bosons [105] and
bulk gravitons [119–121]

n 0 1 2 3 4 5 6 7

Scalars 1.0 8.94 36.0 99.8 222 429 749 1220
Fermions 1.0 14.2 59.5 162 352 664 1140 1830
Gauge bosons 1.0 27.1 144 441 1020 2000 3530 5740
Gravitons 1.0 103 1036 5121 2× 104 7× 104 2.5× 105 8× 105

We finish this subsection with an interesting observation that applies for the rela-
tive emissivities of brane-localised fields. We have already seen that the absorption
cross-section, and consequently the absorption probability, has a strong dependence
on the spin of the propagating field. One thus expects that different species of parti-
cles will have different emission rates. Indeed, this may be seen by putting the emis-
sion curves of scalars, fermions and gauge bosons on the same graph. For a purely
four-dimensional black hole [106], this is shown in Fig. 10.6(left plot). According
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Fig. 10.6 Relative emissivities for brane-localised fields for n = 0 (left plot) and n = 6 (right plot)
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to this, the dominant type of particles emitted by a black hole in four dimensions
is scalars; then come the fermions and finally the gauge bosons. Figure 10.6(right
plot) shows the same emission curves but in the case of a ten-dimensional black
hole. Here, the gauge bosons are the particles preferably emitted by the black hole,
then come the scalars and lastly the fermions. Therefore, the number of extra dimen-
sions determines not only the amount of energy emitted per unit time by the black
hole but also the type of the emitted particles.

10.3.2 The Spin-Down Phase on the Brane

We now turn to the phase in the life of the black hole that precedes the Schwarzschild
one. This is the spin-down phase during which the black hole has a non-vanishing
angular momentum – this is the most generic situation for a black hole created
by a non-head-on particle collision. Assuming that the produced black hole has an
angular momentum component only along an axis in our three-dimensional space,
the line element that describes the gravitational background around such a higher-
dimensional black hole is given by the Myers–Perry solution [37]:

ds2 =
(

1− μ
Σ rn−1

)
dt2 +

2aμ sin2 θ
Σ rn−1 dt dϕ− Σ

Δ
dr2

− Σ dθ 2 −
(

r2 +a2 +
a2μ sin2 θ
Σ rn−1

)
sin2 θ dϕ2 − r2 cos2 θ dΩ 2

n , (10.43)

where
Δ = r2 +a2 − μ

rn−1 , Σ = r2 +a2 cos2 θ . (10.44)

The parameters μ and a that appear in the metric tensor are associated to the black-
hole mass and angular momentum, respectively, through the relations

MBH =
(n+2)A2+n

16πG
μ and J =

2
n+2

aMBH , (10.45)

where A2+n is the area of a (2 + n)-dimensional unit sphere. The horizon radius is
found by setting Δ(rH) = 0 and is found to be rn+1

H = μ/(1 + a2
∗), where we have

defined the quantity a∗ ≡ a/rH . Finally, the temperature and rotation velocity of this
black hole are given by

TH =
(n+1)+(n−1)a2

∗
4π(1+a2∗)rH

, ΩH =
a

(r2
H +a2)

. (10.46)

Since we are still interested in the emission of brane-localised modes by the black
hole, we should first determine the line element on the brane. As in the case of the
Schwarzschild phase, this will follow by fixing the values of the “extra” angular
coordinates. This results in the disappearance of the dΩ 2

n part of the metric leaving
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the remaining unaltered. Then, by employing again the Newman–Penrose method,
we compute the two – decoupled again – master equations, one for the radial part of
the field and one for the angular part, namely [84, 96]

Δ−s d
dr

(
Δ s+1 dRs

dr

)
+

[
K2 − iKsΔ ′

Δ
+4isωr + s

(
Δ ′′ −2

)
δs,|s| −Λm

s j

]
Rs = 0

(10.47)
and

1
sinθ

d
dθ

(
sinθ

dSm
s j

dθ

)
+

[
−2mscotθ

sinθ
− m2

sin2 θ
+a2ω2 cos2 θ

−2aωscosθ + s− s2 cot2 θ +λs j
]

Sm
s j(θ) = 0 . (10.48)

In the above, Sm
s j(θ) are the spin-weighted spheroidal harmonics [107], and we have

used the following definitions:

K = (r2 +a2)ω−am , Λm
s j = λs j +a2ω2 −2amω . (10.49)

The angular eigenvalue λs j does not exist in closed form but it may be computed
either analytically, through a power series expansion in terms of the parameter aω
of the form [108–110]

λs j = −s(s+1)+∑
k

f jms
k (aω)k , (10.50)

or numerically [93, 94, 96, 98].
The differential emission rates for the brane-localised modes during the spin-

down phase will be given by the four-dimensional formula (10.35) but with the grey-
body factor computed from the brane equation of motion (10.47) and the tempera-
ture given by (10.46). Despite the complexity of the gravitational background, the
absorption probability |A (ω)|2 can be again found analytically in the low-energy
and low-angular momentum regime. For example, in the case of scalar fields, the
dependence of |A (ω)|2 on the angular momentum parameter a and number of ex-
tra dimensions n is given in Fig. 10.7 [111]. Each curve in the two plots actually
consists of two lines: a solid one, representing our analytic result, and a dotted one,
representing the numerical result; it is clear that in the low-ω regime, the agree-
ment between the two sets of results is indeed remarkable. A similar agreement is
observed for the cases of fermions and gauge bosons [112].

However, for the complete spectrum, we have to retort again to numerical anal-
ysis [93–98]. In Fig. 10.8, we present the energy emission rates, for the indicative
cases of brane-localised scalars and gauge bosons, again in terms of the angular
momentum parameter and number of extra dimensions. It is clear that an increase
in any of these two parameters results in the significant enhancement of the energy
emission rate. In Table 10.6, we have put together the factors by which the energy
emission rates are enhanced, in terms of a and n, for brane-localised scalars [93, 94],
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Table 10.6 Enhancement factors for the energy emission rates in terms of the angular momentum
parameter and number of extra dimensions

(n = 4) a∗ = 0 a∗ = 1.0 (a∗ = 1) n = 1 n = 7

Scalars 1 ≥ 3 1 ≥ 100
Fermions 1 6 1 99
Gauge bosons 1 ≥ 5 1 ≥ 50

gauge bosons [96] and fermions [98]. When the angular momentum parameter in-
creases from 0 to 1, the energy emission rates, for an eight-dimensional black hole,
increase by a factor from 3 to 6, whereas, for a black hole with a fixed angular mo-
mentum parameter a∗ = 1, the enhancement factor is of the order of 50–100 when
n increases from 1 to 7. If we finally compare the relative emissivities of different
species of fields, then, once again, it is the gauge bosons that a higher-dimensional
rotating black hole prefers to emit on the brane.

Let us finally comment on a particular feature that the radiation spectra from
the spin-down phase in the life of the black hole have. Unlike the line element that
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Fig. 10.9 Angular distribution of the energy emission spectra for scalars (left plot), fermions (cen-
tral plot) and gauge bosons (right plot) for a six-dimensional black hole with a∗ = 1

describes the background around the black hole during its spherically symmetric
Schwarzschild phase, the one for the spin-down phase possesses a preferred axis in
space, which is the rotation axis of the black hole. As a result, the radiation spectra
of all emitted particles have a non-trivial angular dependence. As an indicative case,
in Fig. 10.9, we present the energy emission rates for scalars, fermions and gauge
bosons, from a six-dimensional, rotating black hole with a∗ = 1, as a function of the
energy parameter ωrH and the cos(θ) of the angle measured from the rotation axis
of the black hole. In all spectra, we observe that most of the energy is emitted along
the equatorial plane (θ = π/2) as a result of the centrifugal force that is exerted
on all species of fields. In the special cases of fermions and gauge bosons, i.e. of
particles with non-vanishing spin, there is another effect, that of the spin-rotation
coupling, that causes an additional angular dependence in their spectra and aligns
the emission along the rotation axis of the black hole – the effect is more dominant
for gauge bosons than for fermions, and it dies out as the energy of the emitted
particles increases. The angular spectra depicted in Fig. 10.9 follow after solving
numerically the angular master equation (10.48) for the value of the spin-weighted
spheroidal harmonics Sm

s j(θ) and calculating the differential emission rate

d3E
d(cosθ)dtdω

=
1

4π

∞

∑
j=1

j

∑
m=− j

ω |A (ω)|2
exp(ω̃/TH)−1

[(
Sm
|s| j

)2
+

(
Sm
−|s| j

)2
]

(10.51)

per unit time, frequency and solid angle for each species of particles [94, 96, 98].

10.3.3 Emission in the Bulk

In the case that higher-dimensional mini black holes can indeed be created during
particle collisions, their detection becomes more likely if a significant part of the
black-hole energy is channelled, through Hawking radiation emission, into brane
fields. Therefore, although the bulk emission will be interpreted as a missing energy
signal by a brane observer, we need to know the fraction of the total energy which
is lost along this channel. We thus need to study the emission by the black hole of
the species of particles that are allowed to propagate in the bulk, that is gravitons
and possibly scalar fields. The latter are easier to study as their equation of motion
in the higher-dimensional spacetime can be easily found, by generalising its four-
dimensional expression, to be
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1√
−G

∂M

[√
−GGMN ∂NΦ

]
= 0 , (10.52)

where the capital indices take values in the range (0,1,2,3, . . . ,4 + n) and GMN is
the metric tensor of the higher-dimensional spacetime.

We will study first the Schwarzschild phase, for which more results are available
in the literature. In that case, the gravitational background that we need to consider is
the higher-dimensional Schwarzschild–Tangherlini one (10.8). By assuming again
a factorised ansatz for its wavefunction [105]

Φ(t,r,θi,ϕ) = e−iωt Rωl(r)Ỹ (Ω) , (10.53)

where Ỹ (Ω) is the higher-dimensional spherical harmonics [113], the equation of
motion of the scalar field can reduce to a system of decoupled, radial and angular,
equations. From the radial one, we find the absorption probability |A (ω)|2 for a
bulk scalar field, and finally the radiation spectrum [105]. This is given in Fig. 10.10
in terms of the number of the additional spacelike dimensions n. As in the case of
brane emission, the energy emission rate for bulk scalar fields is greatly enhanced
as n increases.

Therefore, the question “which scalar channel, bulk or brane, is the most domi-
nant one?” naturally arises. If the black hole has the choice to emit scalar fields both
on the brane and in the bulk, which channel is the most effective? In order to answer
this question, we need to compute the bulk-to-brane relative emissivity. This fol-
lows by integrating the corresponding brane and bulk spectra for scalar fields over
the energy parameter ωrH and computing their ratio. Then, we obtain the values for
the bulk-to-brane ratio displayed in Table 10.7 [105]. From these, we see that this
ratio becomes smaller than unity as soon as one extra dimension is introduced in the
theory, decreases further as n takes intermediate values and increases, while remain-
ing smaller than unity, as n reaches higher (supergravity-inspired) values. Thus, we
deduce that, in general, the brane scalar channel is the dominant one; however, for
high values of n, the bulk emission becomes indeed significant.

Fig. 10.10 Energy emission
rates for bulk scalar fields, as
a function of the number of
additional spacelike dimen-
sions, for the Schwarzschild
phase
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Table 10.7 Bulk-to-brane relative emissivity ratio for scalar fields in terms of n

n = 0 n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7

Bulk/brane 1.0 0.40 0.24 0.22 0.24 0.33 0.52 0.93

The above result gives strong support to the argument presented in [114] where
it was argued that most of the energy of a higher-dimensional black hole will be
emitted on the brane. The fact that the number of brane-localised degrees of freedom
is larger than the bulk ones, combined with the above result that when both channels
are available, the black hole still prefers the brane one, solidifies this argument.
However, this matter is far from settled since we have not looked yet at one of the
most important species of particles that may be emitted by the black hole into the
higher-dimensional spacetime, namely the gravitons. If the probability for graviton
emission in the bulk comes out to be much higher than the one for lower-spin fields,
then the bulk-to-brane balance may be overturned.

The graviton equation of motion in the bulk was derived [115, 116] only a
few years ago, in the case of a spherically symmetric, higher-dimensional back-
ground. In there, a comprehensive analysis led to Schrödinger-like equations for the
three types of gravitational degrees of freedom that one encounters in a higher-
dimensional spacetime, namely tensor, vector and scalar ones. In the years that
followed, the equations of motion for all three types were studied both analyti-
cally [117, 118] and numerically [119–122]. The analytical approaches led to the
derivation of the gravitational radiation spectra either in the intermediate [117] or in
the low-energy [118] regime. In the latter case, it was shown [118] that, as long as
the energy of the emitted particles remain in the lower part of the spectrum, the total
bulk graviton emission rate is subdominant to the one for a bulk scalar field, which
in turn is subdominant to the one for a brane scalar field. However, a definite answer
for the graviton effect on the bulk-to-brane balance can be given only if the complete
spectrum for these degrees of freedom is known. This followed from the numerical
analysis performed in [119–121]; according to their results, the energy emission
rates for gravitons for the Schwarzschild phase of the black hole behave similarly
to the ones for the other degrees of freedom, i.e. they are significantly enhanced as
the number of additional spacelike dimensions increases. The exact enhancement
factors in terms of n appear in the last row of Table 10.5, and a direct comparison is
possible: clearly, the bulk graviton emission rate is the one that exhibits the biggest
in magnitude enhancement factor.

Similar results follow when the relative emissivities are computed – these are
displayed in Table 10.8. Due to the aforementioned enhancement factor, the gravi-

Table 10.8 Relative emissivities for brane-localised standard model fields and bulk gravitons

n 0 1 2 3 4 5 6 7
Scalars 1 1 1 1 1 1 1 1
Fermions 0.55 0.87 0.91 0.89 0.87 0.85 0.84 0.82
Gauge bosons 0.23 0.69 0.91 1.0 1.04 1.06 1.06 1.07
Gravitons 0.053 0.61 1.5 2.7 4.8 8.8 17.7 34.7
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tons, from an insignificant part of the total emission in four dimensions, become the
dominant type of particles emitted by the black hole as soon as n ≥ 2. How does
this affect the bulk-to-brane energy balance then? Surprisingly, it is not in a position
to overturn the dominance of the brane channel. The reason for this is that in the
relative emissivities for gravitons displayed in Table 10.8 the total number of gravi-
tational degrees of freedom has already been taken into account. On the other hand,
the relative emissivities for the SM fields correspond to individual scalar, fermionic
and gauge bosonic degrees of freedoms. When the total number of SM degrees of
freedom (not to mention the beyond the SM ones) living on the brane is included in
the calculation of the total “brane emissivity”, the brane channel turns out to be the
dominant one once again.6

Have we therefore settled the question of the brane-to-bulk energy balance? Per-
haps not. The discussion up to now referred to the Schwarzschild phase in the life
of the black hole, and another study needs to be performed for the spin-down phase.
The only results available in the literature for the brane-to-bulk ratio in the case of a
higher-dimensional, rotating black-hole background are the analytic ones for scalar
fields presented in [125]. In Fig. 10.11, we display the ratio of the differential energy
emission rate for scalar fields living on the brane over the one for bulk scalar fields
from a higher-dimensional black hole with line element given by (10.43). From the
left plot of Fig. 10.11, we see that for a black hole with fixed angular momentum
(a∗ = 0.5) the brane-to-bulk ratio remains above unity for all values of n. On the
other hand, from the right plot we observe that for a five-dimensional black hole,
the same ratio is again larger than unity but it decreases as either the angular mo-
mentum of the black hole or the energy of the particle increases. It would be indeed
interesting to check whether the brane dominance in the emission of scalar fields
persists over the whole frequency regime, especially for large values of a [126].
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Fig. 10.11 Brane-to-bulk ratio of the differential energy emission rates for scalar fields during the
spin-down phase in terms of n (left plot) and a (right plot)

6 We note that in the presence of higher-derivative curvature terms in the theory, such as the Gauss–
Bonnet term, it has been found [123] that the bulk emission might become the dominant one for
specific values of the black-hole mass and Gauss–Bonnet coupling constant even for the spherically
symmetric Schwarzschild phase. Also, in the case that the model allows for fermions to propagate
in the bulk, the bulk-to-brane ratio in the fermionic channel exceeds unity even by an order of
magnitude [124].
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10.3.4 Deducing Basic Information

Let us now discuss the methodology one should follow, in case we witness the cre-
ation of miniature black holes in a collider experiment. In order to deduce any use-
ful information on the fundamental, higher-dimensional theory, we need to compute
with the greatest possible accuracy two quantities: the mass of the black hole and its
temperature.

During a high-energy collision of composite particles, it is impossible to know
which pair of partons led to the creation of the black hole and what its total energy
was. Further losses of energy in the form of gravitational or visible radiation during
the balding phase complicate things even more. The black-hole mass can therefore
be reconstructed only through the measurement of the energy of the particles that
appear in the final state after the evaporation of the black hole [82]. Clearly, any
missing energy will greatly reduce the efficiency of the method; therefore one needs
to focus on events with little or no missing energy. To this end, a cut is imposed on
events with missing energy E > 100 GeV, so that the black-hole mass resolution is
about 4%, i.e. ±200 GeV if MBH = 5 TeV [127].

The temperature of the black hole can be determined by performing a fit on the
detected Hawking radiation spectra [82]. Preferably, these spectra should come from
events involving only photons and electrons in the final state. The reason is that (a)
these events would have a very low background and (b) the energy resolution of
these particles is excellent even at high energies.

Once the temperature TH and mass MBH of the black hole are found with the
greatest possible accuracy, one could proceed to determine the dimensionality of
spacetime, in other words the value of n. From the temperature–horizon radius rela-
tion (10.18), we may write [82]

log(TH) = − 1
n+1

log(MBH)+ const. (10.54)

Then, the value of n can simply follow by determining the slope of the straight-
line fit of the data relating MBH and TH . The above method is naturally not free of
problems – indicatively, we may mention the following:

• The resolution in the measurement of the black-hole mass MBH may not be good.
• The black-hole temperature TH changes (increases) as a function of time as the

evaporation progresses.
• The multiplicity of particles in the final state of the evaporation decreases for

high values of n.
• Secondary particles that do not come directly from the evaporating black hole

may obscure the spectrum.

We have already discussed the first problem associated with the determination of
the black-hole mass. Let us briefly discuss the second one involving the temperature.
We consider the special case with fundamental Planck scale given by M∗ = 1 TeV
and number of additional dimensions n = 2. We will pretend that we do not know
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the value of n but rather we are trying to find it through (10.54). We can assume
that the temperature of the black hole either remains constant or it increases as the
time goes by. Then, the use of (10.54) leads to the two plots, respectively, appearing
in Fig. 10.12 [127]. As we see, by fitting the slope of the straight line, we obtain
n = 1.7± 0.3 in the first case and n = 3.8± 1.0 in the second. A realistic model
should be in a position to take into account that the temperature of the black hole is
indeed increasing as the evaporation progresses but also that the lifetime of the black
hole is extremely short. As a result, the real situation should actually be somewhere
in between the two cases considered above, and an accurate fitting should be in a
position to produce the correct value of n which lies indeed between the two derived
values.

The multiplicity of particles emitted by the evaporating black hole depends
strongly on the black-hole mass and its temperature – roughly, the first quantity
stands for the amount of energy available for emission and the second for the aver-
age energy that each emitted particle carries away. More accurately, the number of
particles emitted by the black hole is given by the relation [82]

〈N〉 =
〈

MBH

E

〉
� MBH

2TH
. (10.55)

If, given the extremely short lifetime of the black hole, we assume that its mass
remains constant and that the black hole evaporates instantly into a number of par-
ticles, the multiplicity then depends on the value of TH . From the entries of Table
10.4, we see that the value of the temperature increases as the number of additional
dimensions n increases too. In Fig. 10.13, we display a plot [127] showing the mul-
tiplicity of particles emitted from a black hole as a function of MBH , and for various
values of n [increasing from 2 (top) to 6 (bottom)] for M∗ = 1 TeV. From this, it is
clear that while for small values of n, a black hole, which might be created at the
LHC, can emit up to 25 particles, for large values of n, this number drops at around
10. As a result, the number of data points that we need to construct the TH −MBH

line reduces significantly with n, and with it the accuracy in the determination of its
slope. While therefore, by using (10.54), we might be in a position to obtain a rather
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Fig. 10.12 Plots relating the black-hole mass and temperature measurements, and the derived value
of n, for constant (left plot) and variable (right plot) temperatures [127]
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Fig. 10.13 Multiplicity of
particles emitted by a black
hole as the number of the ad-
ditional spacelike dimensions
n increases from 2 (top curve)
to 6 (bottom curve) [127]
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accurate value of n if that lies in the lower part of its range, it might be very difficult
to distinguish between the cases with n = 5, n = 6 or n = 7.

Many experiments, looking for beyond the SM physics, have included searches
for extra dimensions and miniature black holes in their research programs. At the
Large Hadron Collider alone, three collaborations (ALICE, ATLAS and CMS) are
planning to do so. But what type of particles and signatures should we expect to
see in the detectors? Will we be able to see the Hawking radiation emission spectra
that we presented in the previous sections for elementary SM degrees of freedom
(the so-called primary particles), or maybe “secondary” composite particles will be
detected instead? In order to have a better understanding of the type of particles
expected to be seen in the final state, we need a black hole event generator (BHEG)
that simulates the black-hole production and decay process given a number of initial
conditions. The method followed in a BHEG is roughly the following:

– For a given centre-of-mass energy E of the colliding particles, the black-hole
mass MBH is estimated as a fraction of E.

– The theoretically predicted emission rates for the “primary” particles are fed to
the BHEG and the “secondary” particle spectra are produced.

At the moment, there are several black hole event generators that have been con-
structed: CHARYBDIS [128], Catfish [129] and TRUENOIR [130]. For example,
the CHARYBDIS generator uses the HERWIG program [131] to handle all the QCD
interactions, hadronisation and secondary decays. It also makes specific predictions
for the relative emissivities of the different species of SM particles expected to
be detected. These are shown in Table 10.9 [127] from where we easily deduce

Table 10.9 Predictions for the relative emissivities of SM fields [127] derived by CHARYBDIS

Type Quarks Gluons Charged leptons Neutrino Photons Z0 W± Higgs
(%) 63.9 11.7 9.4 5.1 1.5 2.6 4.7 1.1
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that the dominant type of elementary particles emitted by the black hole should
be the quarks. The exact spectrum of emitted particles depends also on what hap-
pens during the final phase in the life of the black hole, i.e. whether the black hole
evaporates completely by emitting a few energetic particles or a stable remnant is
formed [132–137]. For this reason, BHEGs are equipped with an option regarding
the nature of the final state of the black hole that can be changed at will leading
each time to the corresponding radiation spectra. Finally, any observed deviations
from the anticipated behaviour stemming from standard QCD could be considered
as additional observable signatures of the black-hole formation. For instance, QCD
events with high transverse momentum are expected to become gradually more rare
as the energy of the collision increases [33]; on the contrary, black-hole events with
high transverse momentum dominate over the QCD events, with this happening at
lower energies the smaller the fundamental gravity scale M∗ is [138]. In addition,
in a standard QCD process, one would expect to see the typical back-to-back di-jet
production seen in p+ p collisions with a particle distribution peaked at Δφ = 0 and
π , with Δφ being the difference in the azimuthal coordinate between the two emit-
ted hadrons; as the black hole decays through the emission of individual, sequential
“primary” particles that lead to mono-jet events, we expect the back-to-back di-jets
to be strongly suppressed in the case of the black-hole formation [138, 139].

If we, therefore, wished to summarise some of the most interesting phenomena
associated with the existence of a low-scale gravity and the production of higher-
dimensional black holes, we should mention the following (see [140] for a comple-
mentary discussion on this):

– Large cross-sections that increase with the centre-of-mass energy of the collision
unlike every other SM process – in such a case, the accurate measurement of the
cross-section could lead to the value of M∗

– Primary particles emitted by the black hole with a thermal spectrum and a much
higher multiplicity than any other SM process

– Energy emission rates and relative emissivities for different species of fields de-
termined by the number of additional spacelike dimensions

– Non-trivial angular distribution in the radiation spectra coming from the spin-
down phase

– Comparison of the observed with the predicted spectra could lead to the detection
of the final remnant – its presence would increase the multiplicity of particles in
the final decay, lower the total transverse momentum by an amount equal to its
mass and, if charged, could even be directly detected via an ionising track in the
detector

– Events with high transverse momentum, above the expected QCD background
– Strong suppression of back-to-back di-jet events contrary to the expected QCD

behaviour
– A significant amount of missing energy – larger than the one for SM or SUSY –

due to the emission of weakly interacting particles on the branes and of gravitons
or scalars in the bulk.
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10.3.5 Schwarzschild–de Sitter Black Holes

We would like to finish the discussion of the properties and fate of higher-
dimensional black holes with a brief reference to the class of black holes that
are formed in the presence of a positive cosmological constant Λ in the higher-
dimensional spacetime. The geometrical background around such a Schwarzschild–
de Sitter black hole is given by the line element [36]:

ds2 = −h(r)dt2 +
dr2

h(r)
+ r2dΩ 2

2+n , (10.56)

where

h(r) = 1− μ
rn+1 − 2κ2

DΛ r2

(n+3)(n+2)
, (10.57)

with κ2
D ≡ 8πGD = 8π/M2+n

∗ and μ given again by (10.45). The equation h(r) =
0 has two real, positive solutions, rH and rC standing for the black hole and the
cosmological horizon, respectively. The temperature of the black hole is given by
the expression [141]

TH =
1√

h(r0)
1

4πrH

[
(n+1)− 2κ2

DΛ
(n+2)

r2
H

]
, (10.58)

where r0 is the value of the radial coordinate where the metric function h(r) reaches
its maximum value – the presence of the factor 1/

√
h(r0) in the expression for the

temperature is necessary for its consistent definition [142]. A similar expression can
be written for the temperature TC corresponding to the cosmological horizon – the
fact that rC > rH guarantees that TC < TH ; therefore the flow of energy is from the
black hole towards the remaining spacetime.

The line element of the gravitational background on the brane follows as before
by fixing the values of the additional angular coordinates to θi = π/2. It is then
straightforward to write the equation of motion of a scalar field propagating in the
projected-to-the-brane background. By solving the radial part of the equation of
motion, we may again determine the absorption probability |A (ω)|2, and in turn
the energy emission rate. As in the case of a flat spacetime, the energy emission
rate is found to be greatly enhanced not only with the number of extra dimensions n
but also with the value of the cosmological constant Λ . This enhancement is clearly
shown in Fig. 10.14 [141]. What is, however, more important is the fact that, unlike
in the case where Λ = 0, for Λ �= 0, the emission curve reaches an asymptotic non-
zero value as ω → 0. This asymptotic value increases with the value of Λ and it
might, in principle, be used to “read” the value of the cosmological constant from
the observed radiation spectra. This non-zero asymptotic value is due to the fact
that, unlike in the case of a flat spacetime, the absorption probability acquires a non-
vanishing value when ω → 0. This is given by the expression [141] (see also [143])
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|A (ω = 0)|2 =
4r2

Cr2
H

(r2
C + r2

H)2
(10.59)

and is clearly caused by the presence of the cosmological horizon in the theory –
in the limit rC → ∞, the asymptotic value of the absorption probability, and in turn
of the energy emission rate, reduces to zero. This effect is independent of the exis-
tence of additional spacelike dimensions and should be manifest also in the radiation
spectra of four-dimensional primordial black holes.

10.4 Conclusions

In the context of the theories predicting the existence of either Large or Warped
Extra Dimensions, a low-scale gravitational theory, characterised by a fundamental
Planck scale M∗ much smaller than the four-dimensional one MP, can be realised.
This theory becomes accessible as soon as the energy of a given experiment exceeds
M∗ and manifests itself through a number of strong gravity effects. These effects
should be present even at ordinary standard model particle collisions, taking place,
for instance, at ground-based colliders. As a matter of fact, it is expected that during
collisions with E > M∗ we should witness the creation of not point-like particles
anymore but of extended heavy objects. One such type of objects is black holes, one
of the most fascinating classes of solutions in general relativity.
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The Large Hadron Collider at CERN will have a centre-of-mass energy of
14 TeV, i.e. more than an order of magnitude larger than the value of the funda-
mental Planck scale M∗ = 1 TeV, suggested by the most optimistic scenarios with
extra dimensions. It becomes then a natural place to look for strong gravity effects,
and possibly for the creation of black holes. Studies have shown that their produc-
tion can be realised as long as the energy of the collision exceeds at least the value of
8 TeV. At the same time, the produced black holes are expected to have a mass of at
least a few times the value of the fundamental Planck scale if we want the classical
theory of general relativity and its predictions to be still applicable. According to
the above restrictions, the Large Hadron Collider is found to lie on the edge of both
the classical regime and the black-hole creation threshold.

The calculation of the value of the corresponding production cross-section has at-
tracted a great attention over the years. The current results seem to support the claim
that this value is significant and that it will lead to the creation of, at least, a few
black-hole events per day. In addition, the study of the properties of these higher-
dimensional black holes suggests that the presence of extra dimensions greatly fa-
cilitates their creation: for instance, the horizon radius of these black holes, although
tiny, is orders of magnitude larger compared to the one for a four-dimensional black
hole with the same mass.

When it comes to the detection of these events, the terms are also favourable.
The most important observable associated with the creation of the black hole will
be the emission of Hawking radiation, in the form of elementary particles, as the
black hole evaporates. The corresponding radiation spectrum will be centred around
the value of the temperature of the black hole, which, for the mass values that would
allow their creation at LHC, comes out to be in the range 100–600 GeV. A thorough
theoretical study, employing either analytic or numerical techniques, is necessary in
order to determine, and thus predict, the exact Hawking radiation spectrum from a
decaying black hole. The differential energy emission rates are found to depend on a
number of particle and spacetime properties, and thus to encode a valuable amount
of information for the gravitational background and for the species of particles emit-
ted. Some of the quantities on which we may deduce information are the number
of additional dimensions that exist transversely to the brane, the black-hole angular
momentum, the cosmological constant, the spin of the emitted particles and so on.

In order to make a realistic prediction of the radiation spectra and also to model
in more detail the dynamical aspects of the production and evaporation process,
black hole event generators have been constructed. The exact form of the radiation
spectra, together with an additional number of distinct observable signatures, should
make the detection of black holes, and thus of the existence itself of the extra dimen-
sions, possible at the Large Hadron Collider. Hopefully, during the coming years,
our understanding of particle and gravitational physics, and the fundamental theory
that describes them, will be considerably extended beyond the current limits.
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Chapter 11
Perturbations and Stability
of Higher-Dimensional Black Holes

H. Kodama

Abstract In this article, I explain the gauge-invariant formulation for perturbations
of background spacetimes with untwisted homologous Einstein fibres, which in-
clude lots of practically important spacetimes such as static black holes, static black
branes and rotating black holes in various dimensions. As applications, we discuss
the stability of static black holes in higher dimensions and flat black branes.

11.1 Introduction

Perturbation analysis is a very powerful tool to investigate the dynamical response
of a system against small disturbances. In particular, in general relativity whose fun-
damental equations are quite hard to solve analytically in general due to their non-
linearity and strong couplings, perturbation analysis of exact solutions plays crucial
roles in physical and astrophysical problems. The most successful example is the
perturbative studies of cosmological perturbations, which has in particular provided
the foundation for the present structure formation theory and the precise observa-
tional cosmology in terms of CMB and gravitational waves.

Another important example is the perturbative studies of black holes. Such an in-
vestigation was first systematically done for the Schwarzschild black hole by Regge
and Wheeler [1] in 1957. In particular, they succeeded in reducing the Einstein equa-
tions for odd-parity perturbations, which is called vector perturbations in the present
lecture, to a single master ODE, which is called the Regge–Wheeler equation now.
The formulation was extended to even-parity perturbations (scalar perturbations in
this lecture) by Zerilli 13 years later [2], and the master equation called the Zer-
illi equation was derived for such perturbations. Soon later, Teukolsky succeeded in
deriving similar master equations for perturbations of the Kerr black hole [3].

The original purpose of these formulations appears to have been to study grav-
itational emissions from particles plunging into or orbiting around black holes.
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However, it was soon recognised [4, 5] that the formulation can be used to study the
stability of black holes, which is also a practically important problem in determin-
ing the final fate of gravitational collapse. Actually, the asymptotically flat neutral
and charged black holes were shown to be stable (for the proof and its historical
background, see the excellent book by Chandrasekhar [6]). This together with the
uniqueness theorem for black holes in the asymptotically flat electrovac system [7]
now provides the basis of the current black hole astrophysics.

These results on four-dimensional black holes are practically sufficient for
investigations of low-energy phenomena. However, taking account of the higher
dimensionality of the present candidates for the unified theory, it is likely that
higher-dimensional black holes are formed in the early universe and in extremely
high-energy astrophysical phenomena as well as in particle accelerators. In fact,
motivated by this expectation, lots of work has been done on higher-dimensional
black holes in various theories, and astonishing discoveries have been obtained. In
particular, it is now widely recognised that black hole uniqueness does not hold in
higher dimensions, except for static black holes [8, 9]. Furthermore, a full list of reg-
ular black holes has not been obtained even in five dimensions [10, 11](cf. [12, 13]).

In this situation, perturbative analysis of exact solutions found so far is expected
to be quite useful for the study of stability and uniqueness of higher-dimensional
black holes [14]. In particular, it will be a great help if we can reduce the Einstein
equations for perturbations of higher-dimensional black holes to decoupled master
equations, as in four dimensions. In this lecture, we show that we can really reduce
the perturbation equations to decoupled mater equations for some classes of black
holes and study the stability with the help of them. We also point out that such a
reduction is not always possible.

The remaining part is organized as follows. First, in the next section, we briefly
overview the present status of the black-hole stability issue in four and higher di-
mensions. Then, in Sect. 11.3, we explain the basic aspects of the gauge-invariant
formulation for perturbations of a general class of background spacetimes that can
be written as a warped product of a lower-dimensional spacetime and an Einstein
space. In Sect. 11.4, we apply this formulation to static black holes and discuss their
stability. Next, in Sect. 11.5, we study the stability of flat black branes and point out
the non-hermitian nature of the perturbation equations of this system. Section 11.6
is devoted to brief summary and discussion.

11.2 Present Status of the Black-Hole Stability Issue

In this section, we briefly overview the present status of the investigations of the
stability problem of black holes. It is far from complete.

11.2.1 Four Dimensions

The present status of the stability issue for four-dimensional black holes is sum-
marised as follows:
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– Stable

– Schwarzschild black hole [4, 5, 15, 16]
– Reissner–Nördstrom black hole [6]
– AdS/dS neutral/charged black holes [17, 18]
– Kerr black hole [19]
– Skyrme black hole (non-unique system) [20–22]

– Unstable

– YM black hole (non-unique system) [23, 24]
– Kerr-AdS black hole (�Ωh < 1,rh � �) [25].

As is seen from this list, the stability is established for all AF black holes
with connected horizon in the Einstein–Maxwell system, except for the charged
rotating black hole (Kerr–Newman black hole), for which the perturbation equa-
tions have not been reduced to decoupled single master equations for this
system.

In the asymptotically adS/dS case, the stability of static black holes have been
established with the help of mater equations derived by Cardoso and Lemos [26]. In
contrast, in the rotating case, it was conjectured that large Kerr-AdS black holes are
stable, while small ones are superradiant unstable [27, 28]. Recently, the conjecture
was shown to be true in the limit of slow rotation and small horizon [25].

11.2.2 Higher Dimensions

In contrast to the four-dimensional case, in addition to conventional black holes,
there exist different kinds of black objects such as black strings, black branes,
Kaluza–Klein black holes, Kaluza–Klein bubbles and black tubes in higher dimen-
sions. The classification of these black objects is far from complete, and rather a
little is known about the stability of known solutions. For example, concerning the
asymptotically flat/dS/adS black holes and black branes, the present status of the
stability issue is summarised as follows:

– Stable

– AF vacuum static (Schwarzschild–Tangherlini) [17]
– AF-charged static (D = 5,6−11) [18, 29]
– dS vacuum static (D = 5,6,7 − 11), dS charged static (D = 5,6 − 11)

[17, 18, 29]
– BPS-charged black branes (in type II SUGRA) [30, 31]

– Unstable

– AF/adS static black string and AF black branes (non-BPS) [31–39]
– Rapidly rotating special Kerr-AdS black holes [40]

In this list, the stability of static black holes in higher dimensions (D > 4) has
been proved analytically only for D = 5 in the AF/dS charged case and for D = 5,6
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in the dS neutral case, as explained in Sect. 11.4. The stability in other dimensions
up to D = 11 for these black holes was proved numerically [29]. It is expected that
the same result holds for D > 11 as well.

In contrast, in the asymptotically adS case, the stability in D > 4 is not certain
even for neutral static black holes. This is a delicate problem because instability is
expected for rotating adS black holes [25, 27, 41–43]. This instability is understood
to arise from the combination of superradiance due to a rotating black hole and the
time-like nature of the adS infinity. Some people conjectured that this superradiance
also invokes instabilities in doubly spinning black rings [44] and Kerr black branes
of the form Kerr4 ×R

p [42].
The most impressive result about the stability of black objects in higher dimen-

sions is the discovery of the Gregory–Laflamme instability of black strings/branes
[32]. Since then, a large amount of work has been done on the classification of
black holes and black strings/branes in the S1/torus-compactified system and their
stability. These researches revealed a rich structure of the phase diagram for such
systems as well as new instabilities (for review, see [10, 45]). However, no clear
understanding has been obtained about the origin and fate of these instabilities.
It is partly because most of the researches were done by numerical methods. In
Sect. 11.5, we point out some features that may be obstacles against the analytic
approach.

Finally, we have to emphasise that very little is known about the stability of
asymptotically flat solutions with rotating black objects. For example, rapidly ro-
tating Myers–Perry solutions were conjectured to suffer from a Gregory–Laflamme
type instability [46], but it has not been proved by any exact analysis. Black rings
are also expected to be unstable because of their similarity to black string solutions,
but no exact proof has been presented.

11.3 Gauge-Invariant Perturbation Theory

In this section, we explain the basic idea and techniques of the gauge-invariant for-
mulation of perturbations [47, 48] for a class of background spacetimes that includes
static black hole spacetimes as special case.

11.3.1 Background Solution

We assume that a background spacetime can be locally written as the warped prod-
uct of a m-dimensional spacetime N and an n-dimensional Einstein space K as

Mn+m ≈ N ×K � (zM) = (ya,xi) (11.1)

and has the metric

ds2 = gMNdzMdzN = gab(y)dyadyb + r(y)2dσ2
n , (11.2)
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where dσ2
n = γi jdxidx j is an n-dimensional Einstein metric on K satisfying the

condition
R̂i j = (n−1)Kγi j. (11.3)

Note that for n ≤ 3, an Einstein space is automatically a constant curvature space,
while for n > 3, K does not have a constant curvature generically.

For this type of spacetimes, we can express the covariant derivative ∇M , the con-
nection coefficients ΓM

NL(z) and the curvature tensor RMNLS(z) in terms of the cor-
responding quantities for N m and K n. We denote them as Da,

mΓ a
bc(y),

mRabcd(y)
and D̂i,Γ̂ i

jk(x), R̂i jkl(x), respectively. For example, the curvature tensor can be ex-
pressed as

Ra
bcd = mRa

bcd , Ri
a jb =−DaDbr

r
δ i

j, Ri
jkl = mRabcd −(Dr)2(δ i

kγ jl −δ i
l γ jk), (11.4)

and the non-vanishing components of the Einstein tensor are given by

Gab = mGab −
n
r

DaDbr−
[

n(n−1)
2

K − (Dr)2

r2 − n
r
�r

]
gab (11.5a)

Gi
j =

[
−1

2
mR− (n−1)(n−2)

2
K − (Dr)2

r2 +
n−1

r
�r

]
δ i

j. (11.5b)

From this and the Einstein equations GMN +ΛgMN = κ2TMN , it follows that the
energy–momentum tensor of the background solution should take the form

Tab = Tab(y), Tai = 0, T i
j = P(y)δ i

j. (11.6)

11.3.1.1 Examples

This class of background spacetimes includes quite a large variety of important
solutions to the Einstein equations in four and higher dimensions.

1. Robertson–Walker universe: m = 1 and K is a constant curvature space.

ds2 = −dt2 +a(t)2dσ2
n .

The gauge-invariant formulation was first introduced for perturbations of this
background by Bardeen [47] and applied to realistic cosmological models by the
author [48–50].

2. Braneworld model: m = 2 (and K is a constant curvature space). For example,
the metric of adSn+2 spacetime can be written

ds2 =
dr2

1−λ r2 − (1−λ r2)dt2 + r2dΩ 2
n . (11.7)
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The gauge-invariant formulation of this background was first discussed by Muko-
hyama [51] and then applied to the braneworld model taking account of the junc-
tion conditions by the author and collaborators [52].

3. Higher-dimensional static Einstein black holes: m = 2 and K is a compact
Einstein space. For example, for the Schwarzschild–Tangherlini black hole, K =
Sn. In general, the generalised Birkhoff theorem says [18] that the electrovac
solutions of the form (11.2) with m = 2 to the Einstein equations are exhausted by
the Nariai-type solutions such that M is the direct product of a two-dimensional
constant curvature spacetime N and an Einstein space K with r = const and
the black-hole type solution whose metric is given by

ds2 =
dr2

f (r)
− f (r)dt2 + r2dσ2

n ; (11.8)

f (r) = K − 2M
rn−1 +

Q2

r2n−2 −λ r2. (11.9)

The gauge-invariant formulation for perturbations was applied to this background
to discuss the stability of static black holes by the author and collaborators [17,
18, 53]. This application is explained in the next section.

4. Black branes: m = 2+k and K = Einstein space. In this case, the spacetime fac-
tor N is the product of a two-dimensional black-hole sector and a k-dimensional
brane sector:

ds2 =
dr2

f (r)
− f (r)dt2 +dzzz ·dzzz+ r2dσ2

n . (11.10)

One can also generalise this background to introducing a warp factor in front of
the black-hole metric part. The stability of this background for the case in which
K is an Euclidean space is discussed in Sect. 11.5.

5. Higher-dimensional rotating black hole (a special Myers–Perry solution): m =
4 and K = Sn.

ds2 = grrdr2 +gθθdθ 2 +gttdt2 +2gtφdtdφ +gφφdφ 2 + r2 cos2 θdΩ 2
n , (11.11)

where all the metric coefficients are functions only of r and θ . The stability of
this background was studied in [43].

6. Axisymmetric spacetime: m is general and n = 1.

11.3.2 Perturbations

11.3.2.1 Perturbation Equations

In order to describe the spacetime structure and matter configuration (M̃, g̃,Φ̃)
as a perturbation from a fixed background (M,g,Φ), we introduce a mapping
F : background M → M̃ and define perturbation variables on the fixed background
spacetime as follows:
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h := δg = F∗g̃−g, φ := δΦ = F∗Φ̃−Φ . (11.12)

Then, if these perturbation variables have small amplitudes, the Einstein equations
and the other equations for matter can be described by linearised equations well.
For example, in terms of the variable ψMN = hMN −hgMN/2, the linearised Einstein
equations can be written as

�LψMN +∇M∇AψA
N +∇N∇AψA

M −∇A∇BψABgMN +RABψABgMN

−RψMN = 2κ2δTMN . (11.13)

where �L is the Lichnerowicz operator defined by

�LψMN := −�ψMN +RMAψA
N +RNAψA

M −2RMANBψAB. (11.14)

11.3.2.2 Gauge Problem

For a different mapping F ′, the perturbation variables defined above change their
values, which has no physical meaning and can be regarded as a kind of gauge
freedom. Because F and F ′ are related by a diffeomorphism, the corresponding
changes of the variables are identical to the transformation of the variables with
respect to the transformation f = F ′−1F . In the framework of linear perturbation
theory, we can restrict considerations to infinitesimal changes of F . Hence, f is
expressed in terms of an infinitesimal transformation ξM as

Fig. 11.1 Gauge
transformation

Background
spacetime

Perturbed
spacetime

Gauge

δ̄xM = xM( f (p))− xM(p) = ξM, (11.15)

and the are expressed as

δ̄hMN = −L−ξgMN ≡−∇MξN −∇NξM, δ̄ φ = −L−ξΦ . (11.16)

From its origin, the perturbation equations including the linearised Einstein equa-
tions given above are invariant under this gauge transformation.
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To be specific, for our background spacetime, the metric perturbation trans-
forms as

δ̄hab = −Daξb −Dbξa, (11.17a)

δ̄hai = −r2Da

(
ξi

r2

)
− D̂iξa, (11.17b)

δ̄hi j = −D̂iξ j − D̂ jξi −2rDarξaγi j (11.17c)

and the perturbation of the energy–momentum tensor τMN = δTMN transforms as

δ̄ τab = −ξ cDcTab −TacDbξ c −TbcDaξ c, (11.18a)

δ̄ τai = −TabD̂iξ b − r2PDa(r−2ξi), (11.18b)

δ̄ τi j = −ξ aDa(r2P)γi j −P(D̂iξ j + D̂ jξi) (11.18c)

In order to remove this gauge freedom, one of the following two approaches is
adopted in general:

(i) This method is direct, but it is rather difficult to find relations between pertur-
bation variables in different gauges in general.

(ii) This method describes the theory only in terms of gauge-invariant quantities.
Such quantities have non-local expressions in terms of the original perturbation
variables in general.

These two approaches are mathematically equivalent, and a gauge-invariant variable
can be regarded as some perturbation variable in some special gauge in general.
Therefore, the non-locality of the gauge-invariant variables implies that the relation
of two different gauges are non-local.

11.3.2.3 Tensorial Decomposition of Perturbations

In this lecture, we focus on the gauge-invariant approach to perturbations and ex-
plain that in the class of background spacetimes described above, we can locally
construct fundamental gauge-invariant variables with help of harmonic expansions.
This construction becomes more transparent if we decompose the perturbation vari-
ables into components of specific tensorial types. This decomposition also helps us
to divide the coupled set of perturbation equations into decoupled smaller subsets,
and in some cases into single master equations.

First of all, note that the basic perturbation variables hMN and τMN can be classi-
fied into the following three algebraic types according to their transformation prop-
erty as tensors on the n-dimensional space K :
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(i) Spatial scalar: hab,τab

(ii) Spatial vector: hai,τa
i

(iii) Spatial tensor: hi j,τ i
j

Among these, spatial vectors and tensors can be further decomposed into more
basic quantities. First, we decompose a vector field vi on K into a scalar field v(s)

and a transverse vector v(t)
i as

vi = D̂iv
(s) + v(t)

i ; D̂iv
(t)i = 0. (11.19)

Then, from the relation
�̂v(s) = D̂iv

i, (11.20)

the component fields v(s) and v(t)
i can be uniquely determined from vi up to the

ineffective freedom in v(s) to add a constant, provided this Poisson equation has a
unique solution on K up to the same freedom. For example, when K is compact
and closed, this condition is satisfied.

Next, we decompose a symmetric tensor field of rank 2 on K as

ti j =
1
n

tgi j + D̂iD̂ js−
1
n
�̂sgi j + D̂it j + D̂ jti + t(tt)i j ; (11.21a)

D̂it
i = 0, t(tt)ii = 0, D̂it

(tt)i
j = 0. (11.21b)

Here, t is uniquely determined as t = ti
i . Further, from the relations derived from this

definition,

�̂(�̂+nK)s =
n

n−1

(
D̂iD̂ jt

i j − 1
n
�̂t

)
, (11.22a)

[�̂+(n−1)K]ti = (δ i
j − D̂i�̂−1D̂ j)(D̂mt jm −n−1D̂ jt), (11.22b)

s and ti, hence t(tt)i j , can be uniquely determined from ti j up to the addition of inef-
fective zero modes, provided that these Poisson equations have solutions unique up
to the same ineffective freedom.

After these decompositions of vectors and tensors to basic components, we can
classify these components into the following three types:

(i) Scalar type: vi = D̂iv(s), ti j = 1
ntgi j + D̂iD̂ js− 1

n�̂sgi j.

(ii) Vector type: vi = v(t)
i , ti j = D̂it j + D̂ jti.

(iii) Tensor type: vi = 0, ti j = t(tt)i j .

We call these types . In the linearised Einstein equations, through the covariant dif-
ferentiation and tensor-algebraic operations, quantities of different algebraic ten-
sorial types can appear in each equation. However, in the case in which K is a
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constant curvature space, perturbation variables belonging to different reduced ten-
sorial types do not couple in the linearised Einstein equations if we decompose these
perturbation equations into reduced tensorial types as well, because there exists no
quantity of the vector or the tensor type in the background except for the metric
tensor. The same result holds even in the case in which K is an Einstein space
with non-constant curvature, because the only non-trivial background tensor other
than the metric is the Weyl tensor that can only transform a second rank tensor to a
second rank tensor.

Here, note that gauge transformations can be also decomposed into reduced ten-
sorial types, and the gauge transformation of each type affects only the decomposed
perturbation variables of the same reduced tensorial type. Hence, gauge-invariant
variables can be constructed in each reduced tensorial types independently.

11.3.3 Tensor Perturbation

Let us start from the tensor-type perturbation, for which the argument is simplest.

11.3.3.1 Tensor Harmonics

We utilise tensor harmonics to expand tensor-type perturbations. They are defined as
the basis for second-rank symmetric tensor fields satisfying the following eigenvalue
problem:

(�̂L −λL)Ti j = 0; T
i
i = 0, D̂ jT

j
i = 0, (11.23)

where �̂L is the Lichnerowicz operator on K defined by

�̂Lhi j := −D̂ · D̂hi j −2R̂ik jlh
kl +2(n−1)Khi j. (11.24)

When K is a constant curvature space, this operator is related to the Laplace–
Beltrami operator by

�̂L = −�̂+2nK, (11.25)

and, Ti j satisfies
(�̂+ k2)Ti j = 0; k2 = λL −2nK. (11.26)

We use k2 in the meaning of λL − 2nK from now on when K is an Einstein space
with non-constant sectional curvature.

The harmonic tensor has the following basic properties:

1. Identities: Let Ti j be a symmetric tensor of rank 2 satisfying

T i
i = 0, D jTi j = 0.
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Then, the following identities hold:

2D[iTj]kD[iT j]k = 2Di(TjkD[iT j]k)+Tjk

[
−�T jk +R j

l T lk +Ri
jk

lT
il
]
,

2D(iTj)kD(iT j)k = 2Di(TjkD(iT j)k)+Tjk

[
−�T jk −R j

l T lk −Ri
jk

lT
il
]
.

On the constant curvature space with sectional curvature K, these identities read

2D[iTj]kD[iT j]k = 2Di(TjkD[iT j]k)+Tjk(−�+nK)T jk,

2D(iTj)kD(iT j)k = 2Di(TjkD(iT j)k)+Tjk(−�−nK)T jk.

2. Spectrum: When K is a compact and closed space with constant sectional cur-
vature K, these identities lead to the following condition on the spectrum of k2:

k2 ≥ n|K|. (11.27)

In contrast, when K is not a constant curvature space, no general lower bound
on the spectrum k2 is known.

3. When K is a two-dimensional surface with a constant curvature K, a symmetric
second-rank harmonic tensor that is regular everywhere can exist only for K ≤ 0:
for T 2 (K = 0), the corresponding harmonic tensor Ti j becomes a constant tensor
in the coordinate system such that the metric is written ds2 = dx2 +dy2(k2 = 0);
for H2/Γ (K = −1), a harmonic tensor corresponds to an infinitesimal deforma-
tion of the moduli parameters.

4. For K = Sn, the spectrum of k2 is given by

k2 = l(l +n−1)−2; l = 2,3, · · · , (11.28)

11.3.3.2 Perturbation Equations

The metric and energy–momentum perturbations can be expanded in terms of the
tensor harmonics as

hab = 0, hai = 0, hi j = 2r2HT Ti j, (11.29)

τab = 0, τa
i = 0, τ i

j = τT T
i
j. (11.30)

Since the coordinate transformations contain no tensor-type component, HT and τT

are gauge invariant by themselves:

ξM = δ̄ zM = 0; δ̄HT = 0, δ̄ τT = 0. (11.31)

Only the (i, j)-component of the Einstein equations has the tensor-type compo-
nent:

−�HT − n
r

Dr ·DHT +
k2 +2K

r2 HT = κ2τT . (11.32)
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Here, � = DaDa is the D’Alembertian in the m-dimensional spacetime N . Thus,
the Einstein equations for tensor-type perturbations can be always reduced to the
single master equation on our background spacetime.

11.3.4 Vector Perturbation

11.3.4.1 Vector Harmonics

We expand transverse vector fields in terms of the complete set of harmonic vectors
defined by the eigenvalue problem

(�̂+ k2)Vi = 0; D̂iV
i = 0. (11.33)

Tensor fields of the vector-type can be expanded in terms of the harmonic tensors
derived from these vector harmonics as

Vi j = − 1
2k

(D̂iV j + D̂ jVi). (11.34)

They satisfy
[
�̂+ k2 − (n+1)K

]
Vi j = 0, (11.35a)

V
i
i = 0, D̂ jV

j
i =

k2 − (n−1)K
2k

Vi. (11.35b)

Here, there is one subtle point; Vi j vanishes when Vi is a Killing vector. For this
mode, from the above relations, we have k2 = (n−1)K. We will see below that the
converse holds when K is compact and closed. We call these modes exceptional
modes.

Now, we list up some basic properties of the vector harmonics relevant to the
subsequent discussions.

1. Spectrum: In an n-dimensional Einstein space K satisfying Ri j = (n−1)Kgi j,
we have

2D[iVj]D
[iV j] = 2Di(VjD

[iV j])+Vj [−�+(n−1)K]V j (11.36a)

2D(iVj)D
(iV j) = 2Di(VjD

(iV j))+Vj [−�− (n−1)K]V j (11.36b)

When K is compact and closed, from the integration of these over K , we obtain
the following general restriction on the spectrum of k2:

k2 ≥ (n−1)|K|. (11.37)
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Here, when the equality holds, the corresponding harmonic vector becomes a
Killing vector for K ≥ 0 and a harmonic 1-form for K ≤ 0, respectively.

2. ForK n = Sn, we have

k2 = �(�+n−1)−1, (� = 1,2, · · ·). (11.38)

Here, the harmonic vector field Vi becomes a Killing vector for l = 1 and is
exceptional.

3. For K = 0, the exceptional mode exists only when K is isometric to T p×C n−p,
where C n−p is a Ricci flat space with no Killing vector.

11.3.4.2 Perturbation Equations

Vector perturbations of the metric and the energy–momentum tensor can be ex-
panded in terms of the vector harmonics as

hab = 0, hai = r faVi, hi j = 2r2HT Vi j, (11.39a)

τab = 0, τa
i = rτaVi, τ i

j = τT V
i
j. (11.39b)

For the vector-type gauge transformation

ξa = 0, ξi = rLVi (11.40)

the perturbation variables transform as

δ̄ fa = −rDa

(
L
r

)
, δ̄HT =

k
r

L, δ̄ τa = 0, δ̄ τT = 0. (11.41)

Hence, we adopt the following combinations as the fundamental gauge-invariant
variables for the vector perturbation:

generic modes: τa, τT , Fa = fa +
r
k

DaHT (11.42)

exceptional modes: τa, F(1)
ab = rDa

(
fb

r

)
− rDb

(
fa

r

)
(11.43)

. Note that for exceptional modes, Fa = fa because HT is not defined.
The reduced vector part of the Einstein equations come from the components

corresponding to Ga
i and Gi

j. In terms of the gauge-invariant variables defined above,
these equations can be written as follows.
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– Generic modes:

1
rn+1 Db

(
rn+1F(1)

ab

)
− k2 − (n−1)K

r2 Fa = −2κ2τa,

(11.44a)

k
rn Da(rn−1Fa) = −κ2τT . (11.44b)

– Exceptional modes: k2 = (n−1)K > 0. For these modes, the second of the above
equations coming from Gi

j does not exist.

1
rn+1 Db

(
rn+1F(1)

ab

)
= −2κ2τa. (11.45)

11.3.5 Scalar Perturbation

11.3.5.1 Scalar Harmonics

Scalar functions on K can be expanded in terms of the harmonic functions de-
fined by

(�̂+ k2)S = 0. (11.46)

Correspondingly, scalar-type vector and tensor fields can be expanded in terms of
harmonic vectors Si and harmonic tensors Si j define by

Si = −1
k

D̂iS, (11.47a)

Si j =
1
k2 D̂iD̂ jS+

1
n
γi jS. (11.47b)

These harmonic tensors satisfy the following relations:

D̂iS
i = kS, (11.48a)

[�̂+ k2 − (n−1)K]Si = 0, (11.48b)

S
i
i = 0, D̂ jS

j
i =

n−1
n

k2 −nK
k

Si, (11.48c)

[�̂+ k2 −2nK]Si j = 0. (11.48d)

Note that as in the case of vector harmonics, there are some exceptional modes:

(i) k = 0: Si ≡ 0, Si j ≡ 0.
(ii) k2 = nK (K > 0): Si j ≡ 0.
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For scalar harmonics, k2 = 0 is obviously always the allowed lowest eigenvalue.
Therefore, the information on the second eigenvalue is important. In general, it is
difficult to find such information. However, when K n is a compact Einstein space
with K > 0, we can obtain a useful constraint as follows. Let us define Qi j by

Qi j := DiD jY − 1
n

gi j�Y.

Then, we have the identity

Qi jQ
i j = Di(DiY DiD jY −Y Di�Y −Ri jD

jY ) (11.49)

+Y [�(�+(n−1)K)]Y − 1
n
(�Y )2.

For Y = S, integrating this identity, we obtain the constraint on the second eigen-
value

k2 ≥ nK. (11.50)

For K n = Sn, the equality holds because the full spectrum is given by

k2 = �(�+n−1), (� = 0,1,2, · · ·). (11.51)

11.3.5.2 Perturbation Equations

The scalar perturbation of the metric and the energy–momentum tensor can be ex-
panded as

hab = fabS, hai = r faSi, hi j = 2r2(HLγi jS+HT Si j), (11.52a)

τab = τabS, τa
i = rτaSi, τ i

j = δPδ i
jS+ τT S

i
j. (11.52b)

For the scalar-type gauge transformation

ξa = TaS, ξi = rLSi, (11.53)

these harmonic expansion coefficients for generic modes k2(k2 − nK) > 0 of a
scalar-type perturbation transform as

δ̄ fab = −DaTb −DbTa, δ̄ fa = −rDa

(
L
r

)
+

k
r

Ta, (11.54a)

δ̄HL = − k
nr

L− Dar
r

Ta, δ̄HT =
k
r

L, (11.54b)

δ̄ τab = −T cDcTab −TacDbT c −TbcDaT c, (11.54c)

δ̄ τa =
k
r
(TabT b −PTa), δ̄ (δP) = −T aDaP, δ̄ τT = 0. (11.54d)
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From these we obtain

δ̄Xa = Ta; Xa =
r
k

(
fa +

r
k

DaHT

)
. (11.55)

Hence, the fundamental gauge invariants can be given by τT and the following com-
binations:

F = HL +
1
n

HT +
1
r

DarXa, (11.56a)

Fab = fab +DaXb +DbXa, (11.56b)

Σab = τab +T c
b DaXc +T c

a DbXc +XcDcTab, (11.56c)

Σa = τa −
k
r
(T b

a Xb −PXa), (11.56d)

ΣL = δP+XaDaP. (11.56e)

The scalar part of the Einstein equations comes from Gab, Gai and Gi
j. First, from

δGab, we obtain

−�Fab +DaDcFc
b +DbDcFc

a +n
Dcr

r
(−DcFab +DaFcb +DbFca)

+mRc
aFcb + mRc

bFca −2 mRacbdFcd +
(

k2

r2 −R+2Λ
)

Fab −DaDbFc
c

−2n

(
DaDbF +

1
r

DarDbF +
1
r

DbrDaF

)

−
[

DcDdFcd +
2n
r

DcrDdFcd +
(2n

r
DcDdr +

n(n−1)
r2 DcrDdr

−mRcd
)

Fcd −2n�F − 2n(n+1)
r

Dr ·DF +2(n−1)
k2 −nK

r2 F

−�Fc
c − n

r
Dr ·DFc

c +
k2

r2 Fc
c

]
gab = 2κ2Σab. (11.57)

Second, from δGa
i , we obtain

k
r

[
− 1

rn−2 Db(rn−2Fb
a )+ rDa

(
1
r

Fb
b

)
+2(n−1)DaF

]
= 2κ2Σa. (11.58)

Finally, from the trace-free part of δGi
j, we obtain

− k2

2r2 [2(n−2)F +Fa
a ] = κ2τT , (11.59)
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and from the trace δGi
i,

−1
2

DaDbFab − n−1
r

DarDbFab

+
[

1
2

mRab − (n−1)(n−2)
2r2 DarDbr− (n−1)

DaDbr
r

]
Fab

+
1
2
�Fc

c +
n−1

2r
Dr ·DFc

c − n−1
2n

k2

r2 Fc
c +(n−1)�F

+
n(n−1)

r
Dr ·DF − (n−1)(n−2)

n
k2 −nK

r2 F = κ2ΣL. (11.60)

Note that for the exceptional mode with k2 = nK > 0, the third equation does
not exist, and for the mode with k2 = 0, the second and the third equations do not
exist. For these exceptional modes, the other equations hold without change, but the
variables introduced above are not gauge invariant.

Although the energy–momentum conservation equation ∇NT N
M = 0 can be de-

rived from the Einstein equations, it is often useful to know its explicit form. For
scalar-type perturbations, they are given by the following two sets of equations:

1
rn+1 Da(rn+1Σ a)− k

r
ΣL +

n−1
n

k2 −nK
kr

τT

+
k
2r

(T abFab −PFa
a ) = 0, (11.61a)

1
rn Db

[
rn(Σ b

a −T c
a Fb

c )
]
+

k
r
Σa −n

Dar
r
ΣL

+n
(

T b
a DbF −PDaF

)
+

1
2

(
T b

a DbFc
c −T bcDaFbc

)
= 0. (11.61b)

11.4 Stability of Static Black Holes

We study the stability of static black holes utilising the gauge-invariant formulation
for perturbations explained in the previous section. We consider the static Einstein
black hole which corresponds to the case with m = 2 of the general background
considered in the previous section and has the metric (11.9). The key point is the
fact that gauge-invariant perturbation equations can be reduced to decoupled sin-
gle master equations of the Schrödinger type for any type of perturbations in this
background.
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11.4.1 Tensor Perturbations

The gauge-invariant equation for tensor perturbations is already given by a single
equation for each mode. Assuming that the source term vanishes, it reads

−∂tH
2
T + f∂r( f∂rHT )− k2 +2K

r2 f HT = 0. (11.62)

Here, note that even if there exist electromagnetic fields, τT vanishes because the
electromagnetic field is vector like and does not produce a tensor-type quantity in
the linear order at least.

With the help of the Fourier transformation with respect to t, i.e., assuming HT ∝
e−iωt , this equation can be put into the Schrödinger-type eigenvalue problem;

ω2Φ = − f∂r( f∂rΦ)+VtΦ ; HT = r−n/2Φ(r)e−iωt , (11.63)

where

Vt =
f

r2

[
k2 +2K +

nr f ′

2
+

n(n−2) f
4

]
(11.64)

=
f

r2

[
k2 +

n2 −2n+8
4

K − n(n+2)
4

λ r2 +
n2M
2rn−1 − n(3n−2)Q2

4r2n−2

]
.

If Vt is non-negative, we can directly conclude the stability. However, it is not so
easy to see whether Vt is non-negative or not outside the horizon. This technical
difficulty is easily resolved by considering the energy integral

E :=
∫ r∞

rh

dr

[
1
f
(∂tHT )2 + f (∂rHT )2 +

k2 +2K
r2 H2

T

]
. (11.65)

From the equation for HT , we find that

∂tE = 2 [ f∂tHT∂rHT ]r∞rh
= 0. (11.66)

Hence, in the case K is a constant curvature space, the condition on the spectrum
k2 ≥ n|K| guarantees the positivity of all terms in E, and as a consequence the
stability of the system.

11.4.2 Vector Perturbations

11.4.2.1 Master Equation

For vector perturbations, the energy–momentum conservation law is written

Da(rn+1τa)+
mv

2k
rnτT = 0. (11.67)
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For mv ≡ k2 − (n−1)K �= 0, with the help of this equation, the second of the pertur-
bation equations, (11.44b), can be written as

Da(rn−1Fa) =
2κ2

mv
Da(rn+1τa). (11.68)

In the case of m = 2, from this it follows that Fa can be written in terms of a variable
Ω as

rn−1Fa = εabDbΩ +
2κ2

mv
rn+1τa. (11.69)

Further, the first of the perturbation equations, (11.44a), is equivalent to

Da

(
rn+1F(1)

)
−mvrn−1εabFb = −2κ2rn+1εabτb, (11.70)

where εab is the two-dimensional Levi–Civita tensor for gab, and

F(1) = εabrDa

(
Fb

r

)
= εabrDa

(
fb

r

)
. (11.71)

Inserting the expression for Fa in terms of Ω into (11.70), we obtain the master
equation

rnDa

(
1
rn DaΩ

)
− mv

r2 Ω = −2κ2

mv
rnεabDa(rτb). (11.72)

Next, for mv = 0, the perturbation variables HT and τT do not exist. The matter
variable τa is still gauge-invariant, but concerning the metric variables, only the
combination F(1) defined in terms of fa in (11.71) is gauge invariant. In this case,
the Einstein equations are reduced to the single equation (11.70), and the energy–
momentum conservation law is given by (11.67) without the τT term. Hence, τa can
be expressed in terms of a function τ(1) as

rn+1τa = εabDbτ(1). (11.73)

Inserting this expression into (11.70) with εcdDc(Fd/r) replaced by F(1)/r, we ob-
tain

Da(rn+1F(1)) = −2κ2Daτ(1). (11.74)

Taking account of the freedom of adding a constant in the definition of τ(1), the
general solution can be written as

F(1) = −2κ2τ(1)

rn+1 . (11.75)

Hence, there exists no dynamical freedom in these special modes. In particular, in
the source-free case in which τ(1) is a constant and K = 1, this solution corresponds
to adding a small rotation to the background static black-hole solution.
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11.4.2.2 Neutral Black Holes

For a neutral static Einstein black hole, the master equation for a generic mode can
be put into the canonical form as

ω2Φ = − f∂r( f∂rΦ)+VvΦ ; Ω = rn/2Φ(r)e−iωt , (11.76)

where

Vv =
f

r2

[
mv −

nr f ′

2
+

n(n+2) f
4

]

=
f

r2

[
k2 +

n(n+2)K
4

− n(n−2)
4

λ r2 − 3n2M
2rn−1

]
. (11.77)

This equation is identical to the Regge–Wheeler equation for n = 2,K = 1 and
λ = 0. In this case, we can put Vv into an obviously non-negative form as

Vv =
f

r2 (mv +3 f ) , (11.78)

proving the stability of the black hole against vector perturbations (or axial or odd
perturbations).

In higher dimensions, the potential Vv is not positive definite anymore and we
cannot use this type of argument. However, we can still prove the stability with the
help of the conserved energy integral as in the case of tensor perturbations. In the
present case, if we define E as

E :=
∫ r∞

rh

dr
rn

[
1
r
(∂tΩ)2 + f (∂rΩ)2 +

mv

r2 Ω
2
]
, (11.79)

we have

Ė = 2

[
f

rn ∂tΩ∂rΩ
]r∞

rh

= 0. (11.80)

Further, all terms of E is non-negative because mv ≥ 0. Hence, the stability can be
concluded.

11.4.2.3 Charged Black Hole

The formulation for neutral static black holes can be extended to charged static
black holes. The final master equations consist of two equations: the extension of
the equation for gravitational perturbations with an electromagnetic source and the
equation coming from the Maxwell equations [18]:



11 Perturbations and Stability of Higher-Dimensional Black Holes 447

Fig. 11.2 Vv for K = 1, λ =
0, l = 2
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rnDa

(
1
rn DaΩ

)
−mv

r2 Ω =
2κ2q

r2 A , (11.81a)

1
rn−2 Da(rn−2DaA ) −mv +2(n−1)K

r2 A = q
mvΩ +2κ2qA

r2n (11.81b)

where A is the gauge invariant representing a vector perturbation of the vector
potential of the electromagnetic field defined by

δAa = 0, δAi = A Vi, (11.82)

and q is the black-hole charge related to the charge parameter Q in the background
metric by

Q2 :=
κ2q2

n(n−1)
, (11.83)
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By taking appropriate combinations, these equations can be transformed to the
two decoupled equations

−∂ 2
t Φ± = (−∂ 2

r∗ +V±)Φ±, (11.84)

where the effective potentials are given by

V± =
f

r2

[
mv +

n(n+2)K
4

− n(n−2)
4

λ r2 +
n(5n−2)Q2

4r2n−2 +
μ±

rn−1

]
, (11.85)

with

μ± = −n2 +2
2

M±Δ ; Δ 2 = (n2 −1)2M2 +2n(n−1)mvQ2. (11.86)

11.4.2.4 S-Deformation

The effective potentials V± are not positive definite as in the neutral case. In the
present case, we prove that the system is still stable not by the energy integral
method, but rather by a different method, which we call the S-deformation [17].

We first explain the basic idea by the eigenvalue equation

ω2Φ =
(
−D2 +V (r)

)
Φ , (11.87)

where D = ∂r∗ . If there exists an unstable mode with ω2 < 0 and if V is non-negative
at horizon and at infinity, we can show Φ falls off sufficiently rapidly at horizon and
at infinity. Hence, we obtain the integral identity,

ω2
∫ r∞

rh

|Φ |2 dr
f

=
∫ r∞

rh

[
|DΦ |2 +V (r)|Φ |2

] dr
f

. (11.88)

If V (r) is non-negative definite, this leads to contradiction and hence proves the sta-
bility because the right-hand side is non-negative. In contrast, in the case in which
the sign of V is not definite, we cannot say anything about stability from this equa-
tion.

In order to treat such a case, let us replace D by D = D̃− S(r). Then, by partial
integrations, we obtain the modified integral identity with D and V replaced by D̃
and Ṽ given by

Ṽ = V + f
dS
dr

−S2. (11.89)

Hence, if we can find S such that the modified effective potential Ṽ is non-negative,
we can establish the stability of the system even when the original potential is not
non-negative definite.

For example, by the S-transformation with S = n f /(2r), the effective potentials
V± above can be modified into
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Ṽ± = V± + f
dS
dr

−S2 =
f

r2

[
mv +

1
rn−1

(
3n2

2
M +μ±

)]
. (11.90)

Here, Ṽ+ is obviously positive definite. We can also show that Ṽ− is also positive def-
inite. Hence, a charged static Einstein black hole is stable for vector perturbations.

11.4.3 Scalar Perturbations

11.4.3.1 Master Equation

For a static Einstein black-hole background, assuming that Fab,F ∝ e−iωt , we can
reduce the whole linearised Einstein equations into a single master equation, as in
the case of vector perturbations [53]:

ω2Φ = − f∂r( f∂rΦ)+VsΦ , (11.91)

where the master variable Φ is defined as

Φ =
nrn/2

H

(
2F +

Fr
t

iωr

)
; H = m+

n(n+1)
2

x, (11.92)

with m = k2 − nK and x = 2M/rn−1, and the effective potential Vs is given by

Vs(r) = fU(r)
16r2H2 with

U(r) = −
[
n3(n+2)(n+1)2x2 −12n2(n+1)(n−2)mx

+ 4(n−2)(n−4)m2]λ r2 +n4(n+1)2x3

+n(n+1)
[
4(2n2 −3n+4)m+n(n−2)(n−4)(n+1)K

]
x2

−12n [(n−4)m+n(n+1)(n−2)K]mx

+16m3 +4Kn(n+2)m2. (11.93)

11.4.3.2 Neutral Black Holes

The above master equation is identical to the Zerilli equation for the four-dimensional
Schwarzschild black hole (n = 2,K = 1 and λ = 0). In this case, from

Vs =
f

r2H2

(
m2(m+2)+

6m2M
r

+
36mM2

r2 +
72M3

r3

)
≥ 0, (11.94)

where m = (l − 1)(l + 2)(l = 2,3, · · · ), we can easily prove the stability of the
black hole. In higher dimensions, however, the effective potential Vs is not positive
definite. Hence, an instability may arise.
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Fig. 11.4 Vs for K = 1, λ =
0, l = 2
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Fig. 11.5 Vs for K = 1, λ <
0, l = 2
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Nevertheless, in the case of K = 1 and λ = 0, i.e., for the Schwarzschild–
Tangherlini black hole, we can prove the stability by applying the S-deformation
to the energy integral. First, from the above master equation, we obtain

E :=
∫ r∞

r0

dr
f

[
(∂tΦ)2 +(DΦ)2 +VsΦ2] , (11.95)

Ė = [2 f∂tΦ∂rΦ ]r∞rh
= 0, (11.96)

where D = f∂r. Next, we replace D to D̃ = f∂r +S. Then, by partial integration we
obtain

E =
∫ r∞

r0

dr
f

[
(∂tΦ)2 +(D̃Φ)2 +ṼsΦ2] , (11.97)

where

Ṽs = Vs + f
dS
dr

−S2. (11.98)
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For example, for

S =
f
h

dh
dr

, h ≡ rn/2+l−1 {(l −1)(l +n)+n(n+1)x/2} . (11.99)

we obtain

Ṽs =
f (r)Q̃(r)

4r2 {(l −1)(l +n)+n(n+1)x/2} , (11.100)

where

Q̃(r) ≡ lx[ln(n+1)x+2(l −1){n2 +n(3l −2)+(l−1)2}] . (11.101)

Clearly Ṽs > 0.

11.4.3.3 Charged Black Holes

For charged black holes, we can also reduce the perturbation equations to decoupled
single master equations. First, we generalise the master variable Φ for the metric
perturbation given in (11.92) by replacing H by

H = m+
n(n+1)M

rn−1 − n2Q2

r2n−2 . (11.102)

Next, we introduce the gauge-invariant variable A in terms of which the scalar
perturbation of the electromagnetic field is expressed as

δFab +Dc(E0Xc)εabS = E εabS, (11.103a)

δFai − kE0εabXb
Si = rεabE

b
Si, (11.103b)

δFi j = 0, (11.103c)

with

Ea =
k

rn−1 DaA , rnE = −k2A +
q
2
(Fc

c −2nF). (11.104)

Then, the Einstein and Maxwell equations for scalar perturbations of a charge
Einstein black hole can be reduced to the following two coupled equations [18]:

ω2Φ = −d2Φ
dr2∗

+VsΦ+
κ2q f PS1

r3n/2H2
A , (11.105a)

ω2A = −rn−2 d
dr∗

(
1

rn−2

dA

dr∗

)
+ f

(
k2

r2 A +
2n2(n−1)2Q2 f

r2nH

)
A

+ f
(n−1)q

rn/2

(
4H2 −nPZ

4nH
Φ+ f r∂rΦ

)
. (11.105b)
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where Vs. PS1 and PZ are the functions of r (see [18] for their exiplict expressions).
As in the case of vector perturbations, we can find linear combinations of A and

Φ , in terms of which these equations are transformed to the decoupled equations

ω2

f
Φ± = −( fΦ ′

±)′ +
V±
f
Φ±; V± =

fU±
64r2H2

±
, (11.106)

Here, H+ = 1 − n(n+1)δx/2,H− = m + n(n+1)(1 + mδ )x/2 and δ is a non-
negative constant determined from Q by

Q2 = (n+1)2M2δ (1+mδ ). (11.107)

The effective potentials U± can be expressed in terms of x,λ r2,m and δ as fol-
lows:

U+ =
[
−4n3(n+2)(n+1)2δ 2x2 −48n2(n+1)(n−2)δx

− 16(n−2)(n−4)]λ r2 −δ 3n3(3n−2)(n+1)4(1+mδ )x4

+ 4δ 2n2(n+1)2 {
(n+1)(3n−2)mδ +4n2 +n−2

}
x3

+ 4δ (n+1)
{
(n−2)(n−4)(n+1)(m+n2K)δ

− 7n3 +7n2 −14n+8
}

x2

+
{

16(n+1)
(
−4m+3n2(n−2)K

)
δ − 16(3n−2)(n−2)

}
x

+ 64m+16n(n+2)K,

U− =
[
− 4n3(n+2)(n+1)2(1+mδ )2x2 + 48n2(n+1)(n−2)m(1+mδ )x

− 16(n−2)(n−4)m2]y− n3(3n−2)(n+1)4δ (1+mδ )3x4

− 4n2(n+1)2(1+mδ )2 {
(n+1)(3n−2)mδ −n2}x3

+ 4(n+1)(1+mδ )
{

m(n−2)(n−4)(n+1)(m+n2K)δ

+ 4n(2n2 −3n+4)m+n2(n−2)(n−4)(n+1)K
}

x2 (11.108)

−16m
{
(n+1)m

(
−4m+3n2(n−2)K

)
δ

+ 3n(n−4)m+3n2(n+1)(n−2)K
}

x

+ 64m3 +16n(n+2)m2K. (11.109)

By applying the S-deformation to V+ with
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S =
f

h+

dh+

dr
; h+ = rn/2−1H+, (11.110)

we obtain

ṼS+ =
k2 f

2r2H+
[(n−2)(n+1)δx+2] . (11.111)

Since this is positive definite, the electromagnetic mode Φ+ is always stable for
any values of K, M, Q and λ , provided that the spacetime contains a regular black
hole, although V+ has a negative region near the horizon when λ < 0 and Q2/M2 is
small.

Using a similar transformation, we can also prove the stability of the gravitational
mode Φ− for some special cases. For example, the S-deformation of V− with

S =
f

h−

dh−
dr

; h− = rn/2−1H− (11.112)

leads to

Ṽ− =
k2 f

2r2H−
[2m− (n+1)(n−2)(1+mδ )x] . (11.113)

For n = 2, this is positive definite for m > 0. When K = 1, λ ≥ 0 and n = 3
or when λ ≥ 0,Q = 0 and the horizon is S4, from m ≥ n + 2 (l ≥ 2) and the be-
haviour of the horizon value of x (see [18] for details), we can show that ṼS− > 0.
Hence, in these special cases, the black hole is stable with respect to any type of
perturbation.

However, for the other cases, ṼS− is not positive definite for generic values of the
parameters. The S-deformation used to prove the stability of neutral black holes is
not effective either. Recently, Konoplya and Zhidenko studied the stability of this
system for n > 2 numerically. They found that if λ ≥ 0, the system is stable for
n ≤ 9, i.e., D ≤ 11 [29].

11.4.4 Summary of the Stability Analysis

The results of the stability analysis in this section can be summarised in Table 11.1.
In this table, D represents the spacetime dimension, n + 2. The results for tensor
perturbations apply only for maximally symmetric black holes, while those for vec-
tor and scalar perturbations are valid for black holes with generic Einstein horizons,
except in the case with K = 1,Q = 0,λ > 0 and D = 6.

Note that this is a summary of the analytic study. As we mentioned above, the
stability of AF/dS black hole is shown for D < 12 numerically.
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Table 11.1 Stability of generalised static black holes

Tensor Vector Scalar

∀Q ∀Q Q=0 Q � =0

K =1 λ =0 OK OK OK D = 4,5 OK
D≥6 ?

λ > 0 OK OK D≤6 OK D = 4,5 OK
D≥7 ? D≥ 6 ?

λ <0 OK OK D = 4 OK D = 4 OK
D≥ 5 ? D≥ 5 ?

K =0 λ <0 OK OK D = 4 OK D = 4 OK
D≥ 5 ? D≥ 5 ?

K = −1 λ <0 OK OK D = 4 OK D = 4 OK
D≥ 5 ? D≥ 5 ?

11.5 Flat Black Brane

Static flat black brane solutions are perturbatively unstable in contrast to asymp-
totically simple static black holes discussed in the previous section. This was first
shown by Gregory and Laflamme for the s-mode perturbation, i.e., perturbations that
is spherically symmetric in the directions perpendicular to the brane [32, 33]. Later
on, it was shown that the system has no other unstable modes numerically [37, 38].
These analyses however assumed that the frequency of an unstable mode, if it exists,
is pure imaginary. In the static system this assumption may appear to be natural, but
it is not the case in reality. In this section, we explain this point explicitly by apply-
ing the gauge-invariant formulation in the previous section to this system.

11.5.1 Strategy

Let us rewrite the (m+n+2)-dimensional flat black brane solution

ds2 = − f (r)dt2 + f (r)−1dr2 + r2dσ2
n +dxxx2, (11.114)

which is the product of (n + 2)-dimensional static black-hole solution and the
m-dimensional Euclidean space as

ds2 = gab(y)dyadyb + r2dσ2
n , (11.115)

with the (m+2)-dimensional metric

ds2
m+2 = gab(y)dyadyb = − f (r)dt2 + f (r)−1dr2 +dxxx2. (11.116)

Then, we can classify metric perturbations into tensor, vector and scalar types
with respect to the n-dimensional constant curvature space K n with the metric
dσ2

n = γi j(z)dzidz j and apply the gauge-invariant formulation developed in the pre-
vious chapter to them. Further, since the background spacetime is homogeneous
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in the brane direction xxx, for each type of perturbations, we can apply the Fourier
transformation with respect to xxx = (xp) to the perturbation variable as

δgμν = hμν(t,r,zi)eik·x. (11.117)

Since the background metric is static, we can further apply the Fourier transforma-
tion with respect to t to hμν if necessary and assume that

hμν ∝ e−iωt . (11.118)

Hence, we can reduce the Einstein equations for perturbations to a set of ODEs with
respect to r. In this section, we assume that K n is compact.

11.5.2 Tensor Perturbations

The equation for tensor perturbations (11.32) with τT = 0 reads for the present
system

−∂ 2
t HT +

f
rn ∂r(rn f∂rHT )− f

(
k2

T +2K
r2 + k2

)
HT = 0. (11.119)

Let us define the energy integral for a tensor perturbation by

E :=
∫ ∞

rh

dr rn
[

1
f

Ḣ2
T + f (H ′

T )2 +
(

k2
T +2K

r2 + k2
)

H2
T

]
. (11.120)

Then, from the perturbation equation, we have Ė = 2
[
rn f ḢT H ′

T

]∞
rh

. If there exists

an unstable solution HT ∝ e−iωt with Imω < 0, it must fall off exponentially at
r →∞ and vanish at the horizon from the above equation, provided that the solution
is uniformly bounded. For such a solution, E becomes constant and contradicts the
assumed exponential growth because all terms in the energy integral is non-negative
definite. Hence, the black brane solution is stable for tensor perturbations.

11.5.3 Vector Perturbations

11.5.3.1 Basic Perturbation Equations

Basic gauge-invariant variables for vector perturbations are given by Fa(t,r) with
a = t,r, p (p = 1, · · · ,m). Among these components, we decompose the part parallel
to the brane, Fp, into the longitudinal component Fk proportional to the wave vector
kp and the transversal components F⊥

p as
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Fk = ikpFp = ∂pF p, F⊥
p = Fp +

ikp

k2 Fk. (11.121)

With this decomposition, the perturbation equations (11.44a) and (11.44a) can
be written as the four-wave equations

1
f
∂ 2

t Ft −
f

rn ∂r(rn∂rFt)+
n f +mv + r2k2

r2 Ft =
(

f ′ − 2 f
r

)
∂tFr, (11.122a)

1
f
∂ 2

t Fr − f
rn−2 ∂r(rn−2∂rF

r)+
2(n−1) f +mv + k2r2

r2 Fr =
f ′

f
∂tFt , (11.122b)

1
f
∂ 2

t Fk −
1
rn ∂r(rn f∂rFk)+

r f ′ +n f +mv + k2r2

r2 Fk =
2k2

r
Fr, (11.122c)

1
f
∂ 2

t

(F⊥

r

)
− 1

rn+2 ∂r

[
rn+2 f∂r

(F⊥

r

)]
+

(
k2 +

mv

r2

)(F⊥

r

)
= 0 (11.122d)

and the constraint

− 1
f
∂tFt +

1
rn−1 ∂r(rn−1 f Fr)+Fk = 0. (11.123)

With the help of this constraint, the second of the above can be also written as

1
f
∂ 2

t Fr − 1
rn−2 ∂r

(
rn−2 f∂rF

r)+
(n−1)(2 f − r f ′)+mv + k2r2

r2 Fr = f ′Fk.

(11.124)

Clearly, the transversal part F⊥
p decouple from the other modes and each com-

ponent obeys the same single wave equation. Further, each of (Ft ,Fr) and (Fr,Fk)
obeys a closed set of equations, and the remaining components Fk and Ft , respec-
tively, are directly determined from them with the help of the above constraint
equation.

11.5.3.2 Master Equation

Let us take Fr and Fk as fundamental variables and set

Ψ :=
(

rn/2Fk

(n+1)rn/2−1Fr + rn/2Fk

)
. (11.125)

Then, the perturbation equations can be put into the form

ω2Ψ =
(
−D2 +V + f A

)
Ψ , (11.126)

where V is the scalar potential
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V = f

[
mv

r2 + k2 +
n(n+2)

4r2 f

]
, (11.127)

and A is the matrix potential

A =

⎛
⎜⎝

2k2

n+1
+

(n+2) f ′

2r
− 2k2

n+1
2k2

n+1
− 2k2

n+1
− n

2r
f ′

⎞
⎟⎠ . (11.128)

In order to see whether this set of equations can be reduced into decoupled single
equations, we introduce a new vector variable Φ by

Φ = QΨ +PΨ ′, (11.129)

where P and Q are matrix functions of r that are independent of ω . If we require
that Φ obeys the equation of the form

Φ ′′ +(ω2 −V −W )Φ = 0 (11.130)

with a diagonal matrix W , we obtain constraints on V and B.
For the exceptional mode with mv = 0, these constraints are satisfied, and we find

that for the choice P = 1 and

Q =

⎛
⎜⎝− k2r

n+1
− n+2

2r
f

k2r
n+1

− k2r
n+1

k2r
n+1

+
n
2r

f

⎞
⎟⎠ , (11.131)

W is given by the diagonal matrix whose entries are

W1 =
n+2

r2 f

(
1− (n+1)M

rn−1

)
, W2 = − n

r2 f

(
1− (n+1)M

rn−1

)
. (11.132)

The corresponding equations for Φ decouple to

Φ ′′
i +(ω2 −Vi)Φi = 0, (11.133)

V1 = f

[
k2 +

n+2
4r2

(
n+4− 2(3n+2)M

rn−1

)]
, (11.134)

V2 = f

[
k2 +

n
4r2

(
n−2+

2nM
rn−1

)]
. (11.135)

V2 is clearly positive and further, in terms of the S-deformation with S = (n+2) f /
(2r), V1 is transformed into Ṽ1 = k2 f > 0. Hence, this system is stable for this ex-
ceptional mode.
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If we apply the same transformation in the case mv �= 0, we obtain
[
( f∂r)2 − 2mv f h

r(r2ω2 −mv f )
f∂r +ω2 −V0

]
Φ =

f h
(n+1)(r2ω2 −mv f )

BΦ ,

(11.136)

where h = 1− (n+1)M/rn−1 and

V0 = f

[
mv

r2 + k2 +
n2 +2n+4

4r2 − (n2 +4n+2)M
2rn+1 +

mv f h
r2(r2ω2 −mv f )

]
,

(11.137)

B =
(

(n+1)2ω2 +2mvk2 −2mvk2

2mvk2 −
{
(n+1)2ω2 +2mvk2

}
)

(11.138)

. Since B is a constant matrix with eigenvalues

λ = ±(n+1)ω
[
(n+1)2ω2 +4mvk2]1/2

, (11.139)

we can reduce the set of equations for Φ to decoupled single second-order ODEs.
However, these equations are not useful in the stability analysis because their coef-
ficients depend on ω2 nonlinearly and have singularities in general.1

11.5.3.3 Stability Analysis

Since we cannot find a convenient master equation, let us try to analyse the stability
by directly looking into the structure of the set of equations (11.126). The subtle
point of this set of equations is that the operator on the right-hand side is not self-
adjoint because A is not a hermitian matrix. Therefore, we cannot directly conclude
that ω2 is real.

Allowing for the possible existence of the imaginary part of ω2, we obtain the
following two integral relations from the above equation:

Re(ω2)(Ψ ,Ψ) =
∫ ∞

rh

dr
f

[
(DΨ1)2 +(DΨ2)2 + fU1|Ψ1|2 + fU2|Ψ2|2

]
, (11.140a)

Im(ω2)(Ψ ,Ψ) = − 4k2

n+1

∫ ∞

rh

drIm(Ψ̄1Ψ2). (11.140b)

1 In [38] the author derived a well-behaved single master equation of second-order for the black
string background. There, the author took the gauge in which fz = 0 and HT = 0. Such a gauge
cannot be realised in general because the gauge transformations of fz and HT are given by δ̄ fz =
−S∂z(L/S) and δ̄HT = kvL/S. If we set fz = 0, we cannot change the z-dependence of HT in
general.
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Here, D = f d/dr and

U1 =
mv

r2 +
n+3
n+1

k2 +
n(n+2)

4r2 f +
(n+2) f ′

2r
, (11.141a)

U2 = U1 −
4k2

n+1
− n+1

r
f ′

.
(11.141b)

By applying the S-deformation with S =
n
2r

f toΨ2, the right-hand side of the equa-

tion corresponding to Re(ω2) is deformed to

DΨ2 → (D+S)Ψ2, U2 →
mv

r2 +
n−1
n+1

k2. (11.142)

Therefore, if we assume that ω2 is real, as is assumed in most work, we can
conclude that the system is stable against vector perturbations. However, we cannot
exclude the possible existence of an unstable mode with Im(ω2) �= 0.

11.5.4 Scalar Perturbations

11.5.4.1 Perturbation Variables

The gauge-invariant variable set Fab in the general formulation can be decomposed
into the scalar, vector and tensor parts by their transformation behaviour with respect
to the brane coordinates as

Scalar part: Ftt ,Ftr,Frr,Fkt ,Fkr,Fkk,F⊥.
Vector part: F⊥pt ,F⊥pr,F⊥pk.
Tensor part: F⊥p⊥q.

Here,

Fka = ∂ pFpa/(ik) = (kp/k)Fpa, (11.143a)

F⊥pa = Fpa − (kp/k2)kqFqa = Fpa − (kp/k)Fka, (11.143b)

Fkk = (kpkq/k2)Fpq, F⊥ = F p
p −Fkk, (11.143c)

F⊥p⊥q = F⊥pq − (kq/k)F⊥pk −
1

d −1
F⊥(δpq − kpkq/k2). (11.143d)

The remaining gauge-invariant variable F in the general formulation also belongs to
the scalar part. Note that the vector and tensor parts do not exist for the black string
background.
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11.5.4.2 S-Mode

First, we consider the exceptional mode with ks = 0, which is often called the S-
mode. For this exceptional mode, the general gauge-invariant variables reduce to
Fab = fab and F = HL due to the non-existence of corresponding harmonic vec-
tors and tensors. These variables are not gauge invariant and subject to the gauge
transformation law

δ̄HL = − f
r

Tr, (11.144a)

δ̄ ftt = 2iωTt + f f ′Tr, δ̄ ftr = iωTr − f (Tt/ f )′,

δ̄ frr = −2T ′
r − ( f ′/ f )Tr, (11.144b)

δ̄ ftk = iωTk − ikTt , δ̄ frk = −T ′
k − ikTr, δ̄ fkk = −2ikTk (11.144c)

δ̄ f⊥pt = iωT⊥p, δ̄ f⊥pr = −T ′
⊥p, δ̄ f⊥pk = −ikT⊥p, (11.144d)

δ̄ f⊥ = 0, δ̄ f⊥p⊥q = 0. (11.144e)

In particular, we have

δ̄
(

ftk +
ω
2k

fkk

)
= −ikTt , δ̄

(
frk +

i
2k

f ′kk

)
= −ikTr. (11.145)

From these, we can construct the following five gauge invariants for the scalar
part:

r2−nX = −F⊥, (11.146a)

r2−n(X −Y ) = Fr
r −2rF ′ −

(
r f ′

f
−2

)
F, (11.146b)

r2−nZ = Fr
t +

i f 2

2ω
(Ft

t )′ + iωrF − i f 2

2ω

(
r f ′

f
F

)′
, (11.146c)

r2−nV t = Ft
k +

k
2ω

(
Ft

t −
r f ′

f
F

)
− ω

2k f
Fkk, (11.146d)

r2−nV r = Fr
k − ikrF +

i f
2k

F ′
kk (11.146e)

For the vector part, we adopt the following two gauge invariants

r2−nWt
p = Ft

⊥p −
ω
k f

F⊥pk, r2−nW r
p = Fr

⊥p +
i f
k

F ′
⊥pk. (11.147)
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Tensor Part

First, we study the stability in the tensor part. The perturbation variable of this part,
F⊥p⊥q, follows the closed equation

− f (rn f F ′
⊥p⊥q)

′ +(k2 f −ω2)rnF⊥p⊥q = 0. (11.148)

From this we obtain the integral relation

ω2
∫ ∞

rh

dr∗rn|F⊥p⊥q|2 =
∫ ∞

rh

drrn
[

f |F ′
⊥p⊥q|2 + k2|F⊥p⊥q|2

]

−
[
rn f F̄⊥p⊥qF ′

⊥p⊥q

]∞
rh

. (11.149)

If there exists an unstable mode with ω = ω1 + iω2 (ω2 > 0), a solution that is
bounded at the horizon behaves as F⊥p⊥q ∼ e−iωr∗ near the horizon. Next, at infinity,
the solution behaves

F⊥p⊥q ∼
1

r(n−1)/2
Zν(

√
ω2 − k2r) ∼ r−n/2 exp(±i

√
ω2 − k2r). (11.150)

Therefore, for an unstable mode that is uniformly bounded, the boundary term in
the above integral relation vanishes and the integral at the left-hand side converges.
This implies that ω2 > 0 and leads to contradiction.

Vector Part

Next, for the vector part, we obtain the following two equations for the gauge-
invariant variables Wt

p and W r
p :

−iω
[
Wt

⊥p
′ −

(
n−2

r
+

f ′

f

)
Wt

⊥p

]
+

k2 f −ω2

f 2 W r
⊥p = 0, (11.151a)

−iωWt
⊥p +W r

⊥p
′ +

2
r

W r
⊥p = 0. (11.151b)

Therefore, we can set

W r
⊥p = r−2Φ , iωWt

⊥p = r−2Φ ′, (11.152)

and the perturbation equations can be reduced to the following single master equa-
tion for Φ ;

− f (r−n fΦ ′)′ +(k2 f −ω2)r−nΦ = 0. (11.153)

By the same argument for the tensor part, we can show that this equation does not
have a uniformly bounded solution with Im(ω) > 0.
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Scalar Part

Finally for the scalar part, the perturbation equations gives the closed first-order set
of equations for X ,Y,Z,V t ,

X ′ =
1

k2rH f 2

[
r2ω4 −ω2

{
k2r2 f +n−n(n+1)x+

3n2 +2n−1
4

x2
}

−
(

2+
n−5

2
x

)
k2H f

]
X +

1
k2r f H

{
nω2

(
1− n+1

2
x

)
+ k2H2

}
Y

+
2iω

k2 f 2H
(nω2 − k2H)Z +

ω
kr f H

{
2ω2r2 +(n−1)xH

}
Vt , (11.154a)

Y ′ =
1

k2r f 2H

[
r2ω4 −ω2

{
2k2r2 f +n−n(n+1)x+

3n2 +2n−1
4

x2
}

+r2k4 f 2 −
{

n− (n2 +1)x+
(n+1)2

4
x2

}
k2 f

]
X

+
1

k2r f H

[
nω2

(
1− n+1

2
x

)
+(n−1)k2

{
n− 5n

2
x+

3(n+1)
4

x2
}]

Y

+
2inω

k2 f 2H
(ω2 − k2 f )Z +

ω
kr f H

{
2r2ω2 −2k2r2 f +(n−1)xH

}
Vt ,

(11.154b)

Z′ = − i
(n−1)2x

2ωr2 X +
i

2r2ω

{
r2ω2 +(n−1)2x

}
Y

− 2
r f

(
1− n+1

2
x

)
Z + ik fV t , (11.154c)

(Vt)′ =
ω

2k3 f 3H

[
−r2ω4 +ω2

{
2k2r2 f +n−n(n+1)x+

3n2 +2n−1
4

x2
}

− r2k4 f 2 − k2 f

{
n−2n2x+

5n2 +2n−3
4

x2
}]

X

+
ω

2rk3 f 2H

[
−nω2

(
1− n+1

2
x

)

+k2
{

n−n(n+1)x+
3n2 +2n−1

4
x2

}]
Y

+
i

k3 f 3H

{
−nω4 + k2ω2

(
2n− 3n+1

2
x

)
− k4 f H

}
Z

+
1

rk2 f 2H

{
− r2ω4 +ω2

(
k2r2 f − n−1

2
xH

)

+(n−2)k2 f 2H
}

Vt . (11.154d)
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and the expression for V r in terms of these quantities,

V r =
i(ω2 + k2 f )

2nk3r f 2

[(
(ω2 + k2 f )r2 +n f 2)X +n f 2Y

+
2inω3r
ω2 + k2 f

Z +2ωkr2 fV t
]
. (11.155)

Here, x = 2M/rn−1.
From these equations, we find that X obeys the closed second-order ODE

− f ( f X ′)′ +(n−4)
f 2

r
X ′

+
[
−ω2 + f

(
k2 +

n−2
r2 {1+(n−2)x}

)]
X = 0, (11.156)

which can be put into the canonical form in terms of Φ defined by

X = rn/2−2Φ (11.157)

as
− f ( fΦ ′)′ +

[
−ω2 + f

{
k2 +

n
4r2 (n−2+nx)

}]
Φ = 0. (11.158)

It is clear that this equation does not have an unstable mode.
Next, let us define the new variable Ω by

Ω := PX +n f

(
1− n+1

2
x

)
Y +2inωrZ +2kωr2 fV t ; (11.159)

P :=
[

n+1
2n

x− (n−1)x
2k2r2

(
n− n+1

2
x

)]
ω2r2 +

n−1
2n

xk2r2

−n+n(n+1)x− (3n2 +2n−1)x2, (11.160)

Then, we find that Ω satisfies a closed second-order ODE mod X = 0:

− f ( fΩ ′)′ +A fΩ ′ +(−ω2 +VΩ )Ω = BX , (11.161)

where

A =
f

4r3gH

[{
4n2 +2(n+1)(n−2)x

}
k2r2

+n2(n−1)x{3(n+1)x−2(n+2)}
]
, (11.162a)

VΩ =
f

8r4g2H

[
2{2n− (n+1)x}2 k4r4
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Fig. 11.6 The effective potential for S-modes

+
{

8n2(n+2)−4n(n+2)(3n2 +n+2)x

+2n(n+1)(8n2 +5n+5)x2 − (n+2)(3n−1)(n+1)2x3}k2r2

+n2(n−1)x
{

n(n+1)2x3 −3(3n−1)(n+1)x2

+4(2n2 +2n−1)x−4n2}]
, (11.162b)

B =
f g

nr2H

{
(n+1)ω2 − k2}{

−2k2r2(1−nx)

+n(n−1)x(n− x)
}
, (11.162c)

H := k2 +
n(n−1)

2r2 x, g := n− n+1
2

x. (11.162d)

By the transformation
Ω = rn/2gHΨ , (11.163)

we can put this equation into the canonical form

− f ( fΨ ′)′ +(−ω2 +V )Ψ = rn/2gHBX , (11.164)
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where V = fU/H2 with

U = k6 +
(n+4)k4

4r2 (n+2−3nx)− n(n−1)k2

4r4

{
3n(n+2)

−(2n2 +3n+4)x
}

x+
n3(n−1)2

16r6 x2(n−2+nx). (11.165)

This potential has a deep negative region for 0 < k < kn with some constant kn

dependent on n. It has been shown by numerical calculations [37, 38] that the eigen-
value ω2 becomes negative for some range 0 < k < kc, as first pointed out by Gre-
gory and Laflamme using a different reduction [32].

11.5.4.3 Generic Scalar Perturbation

Tensor Part

The tensor part of generic scalar-type perturbations obeys the decoupled second-
order ODE

− f (rn f F ′
⊥p⊥q)

′ +
(
−ω2 + k2 f +

n+m
r2 f

)
rnF⊥p⊥q = 0. (11.166)

It is obvious that this equation has no unstable mode.

Vector Part

In terms of the gauge-invariant fundamental variables

Vt = rn−2Ft⊥p, Vr = rn−2Fr⊥p, Vk = rn−2Fk⊥p, (11.167)

the perturbation equations for the vector part are expressed as

−( fVr)′ − iω f−1Vt − ikVk = 0, (11.168a)

i
ω
f

(
V ′

t −
n−2

r
fVt

)
+

(
−ω2

f
+ k2 +

n+m
r2

)
Vr

+ik

(
V ′

k −
n−2

r
Vk

)
= 0, (11.168b)

−rn−4(r4−n fV ′
k)

′ +
(
−ω2

f
+

n+m
r2 +

n−2
r

f ′ +
n−2

r2 f

)
Vk

−kω
f

Vt + ik

(
( fVr)′ +

2 f
r

Vr

)
= 0, (11.168c)
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−rn−4 f (r4−nV ′
t )

′ +
(

m+n
r2 +

n−2
r2

)
Vt − iω f

(
V ′

r +
2
r

Vr

)

+kωVk = 0. (11.168d)

By eliminating Vt and introducing the new variables Y and Z by

Φ =
(

Z
Y

)
; Vk = −irn/2−2Z, Vr = f−1rn/2−1Y, (11.169)

this set of equations are reduced to a set of two ODEs,

D2Φ−
{
−ω2 + k2 f +

n+m
r2 f +

n(n−2)
4

f 2
}
Φ = AΦ ; (11.170)

A =

⎛
⎜⎝

n f ′

2r
f −2k f

−k f ′

r
f − (n−2) f ′

2r
f

⎞
⎟⎠ . (11.171)

This set of equations has the same structure as that for vector perturbations and can
be shown to have no unstable mode if ω2 is real.

Scalar Part

Finally, we discuss the scalar part of the generic scalar-type perturbation. Utilising
one of the Einstein equations

ET ≡ 2(n−2)F +Fa
a = 0, (11.172)

the basic perturbation variables can be expressed in terms of X ,Y,Z,Vt ,V r,S and
Ψ as

F̃t
t = X +2F̃ − k2 fV t , F̃r

r = Y +2F̃ , F̃r
t = iωZ, (11.173a)

F̃r
k = ikV r, F̃t

k = ωkV t , F̃kk = S +ω2Vt +2F̃ , (11.173b)

2(n+1)F̃ = −Ψ −X −Y −S− (ω2 − k2 f )Vt , F̃⊥ =Ψ . (11.173c)

Here, Q̃ = rn−2Q in general.
In terms of these variables, the Einstein equations can be reduced to the decou-

pled single equation forΨ ,

− r−n f (rn fΨ ′)′ +
[
−ω2 +

(
k2 +

n+m
r2

)
f

]
Ψ = 0. (11.174)

and the regular first-order set of ODEs for X ,Y,Z,Vt ,V r and S,
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Z′ = X , (11.175a)

X ′ =
n−2

r
X +

(
f ′

f
− 2

r

)
Y +

1
f

(
−ω2

f
+ k2 +

m+n
r2

)
Z

+k2 f ′Vt , (11.175b)

Y ′ =
f ′

2 f
(X −Y )+

ω2

f 2 Z +
k2

f

(
V r − f f ′

2
V t

)
, (11.175c)

(V r)′ = −S, (11.175d)

S′ =
n−2

r
S− 2

r
Y +ω2 f ′

f
V t +

1
f

(
ω2

f
− k2 − n+m

r2

)
V r (11.175e)

k2r2 f ′ f 2(Vt)′ =
[

2ω2r2 +(n−1)x
(

n− n+1
2

x

)]
X

+
[

2ω2r2 −2(k2r2 +n+m) f +2n−4nx+
(n+1)2

2
x2

]
Y

+
1
r

[
−2nω2r2 +(n−1)x(k2r2 +n+m)

]
Z

−(n−1)k2x

(
2+

n−5
2

x

)
fV t −2k2r

(
n− n+1

2
x

)
V r

−2k2r2 f S, (11.175f)

where x = 2M/rn−1.
If we define X1,X2,X3 by

X1 = Z, X2 = r(X +Y )−nZ + k2r fV t ,

X3 = −
(

1+
r f ′

2n f

)
[r(X +Y )−nZ]− k2r2

2n
f ′Vt , (11.176)

and introduce Φ by

Φ :=

⎛
⎝ r−n/2X1

r−n/2+1 f−1X2

r−n/2X3

⎞
⎠ , (11.177)

we can reduce the above set of first-order ODEs to the set of second-order ODEs of
the normal eigenvalue type as

ω2Φ = (−D2 +V0 +W )Φ . (11.178)

Here, V0 is the scalar potential

V0 =
f

4r2

[
4(m+ k2r2)+n2 −2n+n(n+4)x

]
, (11.179)

and W is the following matrix of rank 3:
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W11 = 0, W12 =
(n2 −1)x f 2

nr3 , W13 =
2 f 2

r2 , (11.180a)

W21 =
{4−2(n+1)x}k2r2 −2(n−1)mx−n(n2 −1)x

r f
, (11.180b)

W22 =
n f 2

r2 , W23 = 0, (11.180c)

W31 =
1

2nr2 f

[
2(n−1)x(n−2+ x)r2k2 +

{
4n+2n(n−5)x+2(n+1)x2}m

+ n(n+1)x
{

2n2 − (2n2 +3n−1)x+n(n+1)x2}]
, (11.180d)

W32 =
(n2 −1)x{2− (n+1)x} f

2nr3 , W33 =
(n+1){2− (n+1)x} f

r2 . (11.180e)

Unfortunately, it is not possible to analyse the stability of this second-order sys-
tem by an analytic method, partly because it is not a self-adjoint system. However,
all numerical calculations done by various authors have found no evidence of insta-
bility for this system [37, 38].

11.6 Summary and Discussion

In this lecture, we have explained the gauge-invariant formulation for perturba-
tions of a class of background solutions to the Einstein equations that include vari-
ous practically important spacetimes as special cases. Then, we have illustrated its
power by applying it to the stability problem of static black holes in higher dimen-
sions and flat black branes.

These two systems have one important common feature in addition to staticity
that the background spacetime is of the cohomogeneity one. That is, the isotropy
group of the spacetime has orbits with codimension one, and roughly speaking, the
spacetime is inhomogeneous only in one direction, say r. In this case, the pertur-
bation equations for the system can be automatically reduced to a set of ODEs for
functions of r with the help of the harmonic expansion. This applies to a rotating
black hole case as well [54].

There exists however one crucial difference between the two systems. In the
static black-hole case, the perturbation equations can be reduced to decoupled single
second-order ODE, and the stability problem is formulated as an eigenvalue prob-
lem for the corresponding self-adjoint operator. In contrast, in the black brane case,
it appears to be impossible to reduce all the perturbation equations to decoupled sin-
gle master equations. Further, the eigenvalue problem for the stability issue cannot
be put in the self-adjoint form even if we allow for a multi-component expression,
except for some special modes. Nevertheless, numerical calculations indicate that
there exists no eigen-mode with an imaginary frequency [37, 38]. There must be a
profound reason behind this result.

The gauge-invariant formulation developed in Sect. 11.3 can be also applied to
spacetimes whose cohomogeneity dimension is greater than one. Although this im-
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plies that the formulation can be applied to perturbations of rotating black holes in
higher dimensions such as the Myers–Perry solution [55] and its generalisation to
non-vanishing cosmological constant [56], it may not be practically useful in most
case, because we obtain a couple set of partial differential equations in a reduced
spacetime with dimensions smaller than the original one. However, in some spe-
cial cases, we obtain a single PDE that is separable to ODEs. For example, for a
Kerr(-AdS) black hole that rotates in a two-dimensional plane, we can classify per-
turbations into tensor, vector and scalar types as in the static case, and among these,
the perturbation equation for the tensor-type perturbation is separable [43]. There
may exist other cases in which similar phenomena happen.
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Chapter 12
Analytic Calculation of Quasi-Normal Modes

G. Siopsis

Abstract We discuss the analytic calculation of quasi-normal modes of various
types of perturbations of black holes both in asymptotically flat and in anti-de Sitter
spaces. We obtain asymptotic expressions and also show how corrections can be
calculated perturbatively. We pay special attention to low-frequency modes in anti-
de Sitter space because they govern the hydrodynamic properties of a gauge theory
fluid according to the AdS/CFT correspondence. The latter may have experimental
consequences for the quark-gluon plasma formed in heavy ion collisions.

12.1 Introduction

To many practitioners of quantum gravity the black hole plays the role of a soliton, a non-
perturbative field configuration that is added to the spectrum of particle-like objects only
after the basic equations of their theory have been put down, much like what is done in
gauge theories of elementary particles, where Yang–Mills equations with small coupling
constants determine the small-distance structure, and solitons and instantons govern the
large-distance behavior.

Such an attitude however is probably not correct in quantum gravity. The coupling con-
stant increases with decreasing distance scale which implies that the smaller the distance
scale, the stronger the influences of “solitons”. At the Planck scale it may well be impossi-
ble to disentangle black holes from elementary particles.

– G. ’t Hooft

Quasi-normal modes (QNMs) describe small perturbations of a black hole which is
a thermodynamical system whose (Hawking) temperature and entropy are given in
terms of its global characteristics (total mass, charge and angular momentum). They
are obtained by solving a wave equation for small fluctuations subject to the con-
ditions that the flux be ingoing at the horizon and outgoing at asymptotic infinity.
These boundary conditions in general lead to a discrete spectrum of complex fre-
quencies whose imaginary part determines the decay time of the small fluctuations
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Imω =
1
τ

. (12.1)

There is a vast literature on quasi-normal modes and we make no attempt to re-
view it. Instead, we concentrate on obtaining analytic expressions for quasi-normal
modes of various black-hole perturbations of interest. One can rarely obtain analytic
expressions in closed form. Instead, we discuss techniques which allow one to calcu-
late the spectrum perturbatively starting with an asymptotic regime (e.g., high or low
overtones). In asymptotically flat space, we discuss the cases of four-dimensional
Schwarzschild and Kerr black holes. Generalization to higher-dimensional space-
times does not present substantially new calculational challenges. However, we
should point out that the case of a rotating black hole is considerably harder than
the Schwarzschild case.

We also discuss asymptotically AdS spaces and obtain the spectrum as a pertur-
bative expansion around high overtones. At leading order the frequencies are pro-
portional to the radius of the horizon. When expanding around low overtones, one in
general obtains an additional frequency which is inversely proportional to the hori-
zon radius. Thus for large black holes there is a gap between the lowest frequency
and the rest of the spectrum of quasi-normal modes. We pay special attention to the
lowest frequencies because they govern the behavior of the gauge theory fluid on
the boundary per the AdS/CFT correspondence. The latter may have experimental
consequences pertaining to the formation of the quark-gluon plasma in heavy ion
collisions.

12.2 Flat Spacetime

We start with a study of QNMs in asymptotically flat spacetimes. We discuss scalar
perturbations of Schwarzschild and Kerr black holes in four dimensions.

12.2.1 Schwarzschild Black Holes

The metric of a Schwarzschild black hole in four dimensions is

ds2 = − f (r)dt2 +
dr2

f (r)
+ r2dΩ 2 , f (r) = 1− 2GM

r
. (12.2)

The Hawking temperature is

TH =
1

8πGM
=

1
4πr0

, (12.3)

where r0 = 2GM is the radius of the horizon.
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A spin- j perturbation of frequency ω is governed by the radial equation

− f (r)
d
dr

(
f (r)

dΨ
dr

)
+V (r)Ψ = ω2Ψ , (12.4)

where V (r) is the “Regge–Wheeler” potential

V (r) = f (r)
(

�(�+1)
r2 +

(1− j2)r0

r3

)
. (12.5)

The spin is j = 0,1,2 for scalar, electromagnetic and gravitational perturbations,
respectively. It is advantageous to avoid integer values of j throughout the discussion
and only take the limit j → integer at the end of the calculation.

By defining the “tortoise coordinate”

r∗ =
∫

dr
f (r)

= r + r0 ln

(
r
r0

−1

)
, (12.6)

the wave equation may be brought into a Schrödinger-like form,

− d2Ψ
dr2∗

+V (r(r∗))Ψ = ω2Ψ (12.7)

to be solved along the entire real r∗-axis. At both ends the potential vanishes (V → 0
as r∗ → ±∞) therefore the solutions behave asΨ ∼ e±iωr∗ . For QNMs, we demand

Ψ ∼ e∓iωr∗ , r∗ → ±∞ . (12.8)

assuming Reω > 0.

12.2.1.1 Limit ��� →→→ ∞∞∞

In this case it suffices to consider the potential near its maximum. Expanding around
the maximum of the potential (V ′

0(rmax) = 0) [1],

rmax =
3
2

r0 +O(1/�) , (12.9)

we obtain
V0[r(r∗)] ≈ α2 −β 2(r∗ − r∗(rmax))2 , (12.10)

where

α2 =
4

27

(
�+

1
2

)
r2

0 +O(1/�) , β 2 =
16

729

(
�+

1
2

)
+O(1/�) . (12.11)
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The solutions to the wave equation are

Ψn = Hn(
√

iβx)eiβx2/2 , n = 0,1,2, . . . (12.12)

where Hn are Hermite polynomials. The corresponding eigenvalues are

ωn =
2

3
√

3r0

{
�+

1
2

+ i(n+
1
2
)
}

+O(1/�) . (12.13)

This result is in agreement with the standard WKB approach [2].

12.2.1.2 Limit nnn →→→ ∞∞∞

The asymptotic form of QNMs for large n is

ωn

TH
= (2n+1)πi+ ln3 (12.14)

independent of the angular momentum quantum number �. This form was first
derived numerically [3–7] and subsequently confirmed analytically [8]. The large
imaginary part of the frequency (Imωn) makes the numerical analysis cumbersome
but is easy to understand because the spacing of frequencies is 2πiTH which is the
same as the spacing of poles of a thermal Green function on the Schwarzschild
black-hole background. On the other hand the real part (Reωn) is small. Its analyti-
cal value was first proposed by Hod [9].

The analytical derivation of the asymptotic form (12.14) of QNMs by Motl and
Neitzke [8] offered a new surprise because it heavily relied on the black-hole sin-
gularity. It is intriguing that the unobservable region beyond the horizon influences
the behavior of physical quantities.

We shall calculate the asymptotic formula for QNMs including first-order correc-
tions [10] by solving the wave equation perturbatively for arbitrary spin of the wave.
We shall obtain agreement with results from numerical analysis for gravitational and
scalar waves [5, 11] and WKB analysis for gravitational waves [12].

Let
Ψ = e−iωr∗ f (r∗) . (12.15)

We have f (r∗) ∼ 1 as r∗ → +∞ and near the horizon, f (r∗) ∼ e2iωr∗ (as r∗ → −∞).
Let us continue r analytically into the complex plane and define the boundary condi-
tion at the horizon in terms of the monodromy of f (r∗(r)) around the singular point
r = r0,

M (r0) = e−4πωr0 (12.16)

along a contour running counterclockwise. We may deform the contour in the
complex r-plane so that it either lies beyond the horizon (Rer < r0) or at infinity
(r → ∞). The monodromy only gets a contribution from the segment lying beyond
the horizon.

It is convenient to change variables to
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z = ω(r∗ − iπr0) = ω(r + r0 ln(1− r/r0)) , (12.17)

(where we chose a branch such that z → 0 as r → 0). The potential can be written as
a series in

√
z,

V (z) = −ω2

4z2

(
1− j2 +

3�(�+1)+1− j2

3

√
− 2z
ωr0

+ · · ·
)

(12.18)

which is a formal expansion in 1/
√
ω .

Now deform the contour defining the monodromy so that it gets mapped onto the
real axis in the z-plane. Near the singularity z = 0,

z ≈− ω
2r0

r2 . (12.19)

Choose a contour in the r-plane so that near r = 0, the positive and negative real
axes in the z-plane are mapped onto

argr = π− argω
2

, argr =
3π
2

− argω
2

, (12.20)

in the r-plane, respectively. These segments form a π/2 angle (independent of
argω).

To avoid the r = 0 singularity, go around an arc of angle 3π/2 which corresponds
to an angle of 3π around z = 0 in the z-plane.

Considering the black-hole singularity (r = 0), we note that there are two solu-
tions,

f±(r) = r1± jZ±(r) , (12.21)

where Z± are analytic functions of r. Going around an arc of angle of 3π/2, we
obtain

f±(e3πi/2r) = e3π(1± j)i/2 f±(r), (12.22)

which is an exact result.
To proceed further, we need to relate the behavior of the wavefunction near the

black-hole singularity to its behavior at large r in the complex r-plane. To this end,
we shall solve the wave equation perturbatively, thus writing the wavefunction as a
perturbation series in 1/

√
ω .

At zeroth order, the wave equation reads

d2Ψ (0)

dz2 +
(

1− j2

4z2 +1

)
Ψ (0) = 0 . (12.23)

Two linearly independent solutions are

f (0)
± (z) = eizΨ (0)

± = eiz

√
πz
2

J± j/2(z) (12.24)

in terms of Bessel functions. We deduce the behavior at infinity (z → ∞)
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f (0)
± (z) ∼ eiz cos(z−π(1± j)/4) . (12.25)

The boundary conditions imply f (z) ∼ const. as z → ∞ along the positive real axis
in the z-plane. Therefore, we ought to adopt the linear combination

f (0) = f (0)
+ − e−π ji/2 f (0)

− ∼ eiz√zH(1)
j/2(z) (12.26)

(in terms of a Hankel function). As z → ∞, we obtain

f (0)(z) ∼−e−π(1+ j)i/4 sin(π j/2) (12.27)

a constant, as desired.
Going along the 3π arc around z = 0 in the z-plane, we have

f (0)(e3πiz) = e3π(1+ j)i/2
(

f (0)
+ (z)− e−7π ji/2 f (0)

− (z)
)

. (12.28)

As z → ∞,

f (0)(z) ∼ e−π(1+ j)i/4 sin(3π j/2)+ eπ(1− j)i/4 sin(2π j)e2iz . (12.29)

The monodromy to zeroth order is

M (r0) = − sin(3π j/2)
sin(π j/2)

= −(1+2cos(π j)) , (12.30)

leading to a discrete set of complex frequencies (QNMs) [8]

ωn

TH
= (2n+1)πi+ ln(1+2cos(π j))+O(1/

√
n) . (12.31)

Next, we calculate the first-order correction to the above expression [10]. Expanding
the wavefunction in 1/

√
ω ,

Ψ =Ψ (0) +
1√−ωr0

Ψ (1) +O(1/ω) (12.32)

the first-order correction obeys

d2Ψ (1)

dz2 +
(

1− j2

4z2 +1

)
Ψ (1) =

√
−ωr0 δVΨ (0) , (12.33)

where

δV (z) =
1− j2

4z2 +
1
ω2 V [r(z)] . (12.34)

Two linearly independent solutions are

Ψ (1)
± (z) = CΨ (0)

+ (z)
∫ z

0
Ψ (0)
− δVΨ (0)

± −CΨ (0)
− (z)

∫ z

0
Ψ (0)

+ δVΨ (0)
± , (12.35)
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where C =
√−ωr0

sin(π j/2) and the integral is along the positive real axis on the z-plane
(z > 0). We obtain the large-z behavior

Ψ (1)
± (z) ∼ c−± cos(z−π(1+ j)/4)− c+± cos(z−π(1− j)/4) , (12.36)

where
c±± = C

∫ ∞

0
Ψ (0)
± δVΨ (0)

± . (12.37)

To obtain the small-z behavior, expand

δV (z) = −3�(�+1)+1− j2

6
√
−2ωr0

z−3/2 +O(1/ω) . (12.38)

It follows that
Ψ (1)
± = z1± j/2G±(z)+O(1/ω) , (12.39)

where G± are even analytic functions of z.
For the desired behavior as z → ∞, define

Ψ =Ψ (0)
+ +

1√−ωr0

{
Ψ (1)

+ − e−π ji/2Ψ (1)
− + e−π ji/2ξΨ (0)

−

}
+ · · · , (12.40)

where ξ ∼ O(1) and dots represent terms of order higher than O(1/
√
ω). By de-

mandingΨ ∼ e−iz as z → +∞, we fix

ξ = ξ+ +ξ− , ξ+ = c++eπ ji/2 − c+− , ξ− = c−−e−π ji/2 − c+− . (12.41)

Then the requirement f (z) = eizΨ(z) ∼ const. as z → ∞ yields

f (z) ∼−e−π(1+ j)i/4 sin(π j/2)
{

1− ξ−√−ωr0

}
. (12.42)

In the neighborhood of the black-hole singularity (around z = 0), going around a 3π
arc, we obtain

Ψ (1)
± (e3πiz) = e3π(2± j)i/2Ψ (1)

± (z) , (12.43)

therefore

Ψ(e3πiz) =Ψ (0)(e3πiz)

− e3π ji/2 1√−ωr0

{
Ψ (1)

+ (z)− e−7π ji/2(Ψ (1)
− (z)− iξΨ (0)

− (z))
}

. (12.44)

As z → ∞ along the real axis,

f (z) ∼ e−π(1+ j)i/4 sin(3π j/2)
{

1− 1√−ωr0
A

}

+eπ(1− j)i/4 sin(2π j)
{

1− 1√−ωr0
B

}
e2iz ,



478 G. Siopsis

where

A =
i−1

2
eπ ji/2 (ξ+ + iξ−−ξ cot(3π j/2)) (12.45)

and B is not needed for our purposes. The monodromy to this order reads

M (r0) = − sin(3π j/2)
sin(π j/2)

{
1+

i−1
2
√−ωr0

eπ ji/2 (ξ−−ξ+ +ξ cot(3π j/2))
}

,

(12.46)
leading to the QNM frequencies [10]

ωn

TH
= (2n+1)πi+ ln(1+2cos(π j))+

eπ ji/2√
n+1/2

(ξ−−ξ+ +ξ cot(3π j/2))

+O(1/n) , (12.47)

which includes the O(1/
√

n) correction to the O(1) asymptotic expression (12.31).

For an explicit expression, use

J (ν ,μ) ≡
∫ ∞

0
dzz−1/2Jν(z)Jμ(z) =

√
π/2Γ ( ν+μ+1/2

2 )

Γ (−ν+μ+3/2
2 )Γ ( ν+μ+3/2

2 )Γ ( ν−μ+3/2
2 )

.

(12.48)
We obtain

c±± = π
3�(�+1)+1− j2

12
√

2 sin(π j/2)
J (± j/2,± j/2) (12.49)

therefore

ξ−−ξ+ +ξ cot(3π j/2) = (1− i)
3�(�+1)+1− j2

24
√

2π3/2

sin(2π j)
sin(3π j/2)

×Γ 2(1/4) Γ (1/4+ j/2) Γ (1/4− j/2) , (12.50)

where we also used the identity Γ (y)Γ (1− y) = π
sin(πy) . This expression has a well-

defined finite limit as j → integer.
For scalar waves, let j → 0+. We obtain

ωn

TH
= (2n+1)πi+ ln3+

1− i√
n+1/2

�(�+1)+1/3

6
√

2π3/2
Γ 4(1/4)+O(1/n) , (12.51)

which is in agreement with numerical results [11].
For gravitational waves, we let j → 2 and obtain

ωn

TH
= (2n+1)πi+ ln3+

1− i√
n+1/2

�(�+1)−1

18
√

2π3/2
Γ 4(1/4)+O(1/n) , (12.52)

which is in agreement with the results from a WKB analysis [12] as well as
numerical analysis [5].
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12.2.2 Kerr Black Holes

Extending the above discussion to rotating (Kerr) black holes is not straightforward.
Bohr’s correspondence principle

δM = h̄Reω , (12.53)

and the first law of black-hole mechanics

δM = THδSBH +ΩδJ , (12.54)

imply the asymptotic expression [9]

Reω = TH ln3+mΩ , (12.55)

where m is the azimuthal eigenvalue of the wave, and Ω is the angular velocity
of horizon. In deriving the above, we identified δSBH ≡ ln3 [13]. Even though the
above result has the correct limit as Ω → 0 (in agreement with the Schwarzschild
expression (12.14)), it is in conflict with numerical results [14] indicating Reω ≈
mΩ .

To resolve the above contradiction, we shall obtain an analytic solution to the
wave (Teukolsky [15]) equation which will be valid for asymptotic modes bounded
from above by 1/a, where

a =
J
M

, (12.56)

with J being the angular momentum and M the mass of the Kerr black hole. The cal-
culation will be valid for a � 1 which includes the Schwarzschild case (a = 0) [16].
Our results will confirm Hod’s expression (12.55) and not necessarily contradict nu-
merical results (the latter may still be valid in the asymptotic regime 1/a � ω). In
the Schwarzschild limit (a → 0) the range of frequencies extends to infinity and our
expression reduces to the expected form (12.14).

The metric of a Kerr black hole is

ds2 = −
(

1− 2Mr
Σ

)
dt2 +

4Mar sin2 θ
Σ

dtdφ +
Σ
Δ

dr2

+ Σdθ 2 + sin2 θ
(

r2 +a2 +
2Ma2r sin2 θ

Σ

)
dφ 2 , (12.57)

where Σ = r2 + a2 cos2 θ , Δ = r2 − 2Mr + a2 = (r− r−)(r− r+) and we have set
Newton’s constant G = 1. The angular velocity of the horizon and Hawking temper-
ature, respectively, are

Ω =
a

2Mr+
, TH =

1− r−/r+

8πM
. (12.58)
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12.2.2.1 Massless Perturbations

Massless perturbations are governed by the Teukolsky wave equation [15]

(
(r2 +a2)2

Δ
−a2 sin2 θ

)
∂ 2Ψ
∂ t2 +

4Mar
Δ

∂ 2Ψ
∂ t∂φ

+
(

a2

Δ
− 1

sin2 θ

)
∂ 2Ψ
∂φ 2

− 1
Δ s

∂
∂ r

(
Δ s+1 ∂Ψ

∂ r

)
−2s

(
M(r2 −a2)

Δ
− r− iacosθ

)
∂Ψ
∂ t

− 1
sinθ

∂
∂θ

(
sinθ

∂Ψ
∂θ

)
−2s

(
a(r−M)

Δ
+

icosθ
sin2 θ

)
∂Ψ
∂φ

+(s2 cot2 θ − s)Ψ = 0 ,

(12.59)

where s = 0,−1,−2 for scalar, electromagnetic and gravitational perturbations, re-
spectively. Writing the wavefunction in the form

Ψ = e−iωt eimφS(θ) f (r) (12.60)

we obtain the angular equation

1
sinθ

(sinθ S′)′ +
(

a2ω2 cos2 θ − m2

sin2 θ
−2aωscosθ − 2mscosθ

sin2 θ
− s2 cot2 θ

)
S

= −(A+ s)S , (12.61)

where A is the separation constant (eigenvalue) and the radial equation

1
Δ s (Δ

s+1 f ′)′ +V (r) f = (A+a2ω2) f , (12.62)

where the potential is given by

V (r) =
(r2 +a2)2ω2 −4aMrωm+a2m2 +2ia(r−M)ms−2iM(r2 −a2)ωs

Δ
+2irωs . (12.63)

Let us simplify the notation by placing the horizon at r = 1, i.e., by setting

2M = 1+a2 , r− = a2 , r+ = 1 (12.64)

and solve the two wave equations by expanding in a. We shall keep terms up to O(a)
assuming ω is large but bounded from above by 1/a, (1 � ω � 1/a). Thus ω is in
an intermediate range which becomes asymptotic in the Schwarzschild limit a → 0.

The solutions to the angular equation to lowest order are spin-weighted spherical
harmonics with eigenvalue

A = �(�+1)− s(s+1)+O(aω) . (12.65)
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Near the horizon (r → 1),

f (r) ∼ (r−1)λ , λ = i(ω−am)+O(1/ω) . (12.66)

At infinity (r → ∞), f (r) ∼ eiωr. Introducing the “tortoise coordinate”

z = ωr +(ω−am) ln(r−1) , (12.67)

the boundary conditions read

f (z) ∼ e±iz , z →±∞ . (12.68)

From the boundary condition at the horizon we deduce the monodromy for the func-
tion F (z) ≡ eiz f (z) (notice that F ∼ const. as z → +∞) around the singular point
r = 1,

M (1) = e4π(ω−am) +O(a2) . (12.69)

To express the radial equation in terms of the tortoise coordinate, define

f (r) = Δ−s/2
0

R(r)√
r(ωr−am)

, (12.70)

Δ0 = r(r−1) (note Δ = Δ0 +O(a2)). Inverting z = z(r),

r =

√
−2z
ω

+O(1/ω) , (12.71)

the radial equation to lowest order in 1/
√
ω in terms of R reads

d2R
dz2 +

{
1+

3is
2z

+
4− s2 −4iams

16z2

}
R = 0 (12.72)

to be solved along the entire real axis. This is Whittaker’s equation. The solutions
may be written as

Mκ,±μ(x) = e−x/2x±μ+1/2M(
1
2
±μ−κ,1±2μ ,x) , (12.73)

where κ =
3s
4

, μ2 =
s(s+4iam)

16
, Mκ,±μ is Kummer’s function (also called Φ) and

we set x = 2iz. We need to introduce Whittaker’s function

Wκ,μ(x) =
Γ (−2μ)

Γ ( 1
2 −μ−κ)

Mκ,μ(x)+
Γ (2μ)

Γ ( 1
2 +μ−κ)

Mκ,−μ(x) , (12.74)

due to its clean asymptotic behavior,

Wκ,μ(x) ∼ e−x/2 xκ (1+O(1/x)) , |x| → ∞ . (12.75)
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We may compute the monodromy by deforming the contour as before. Going
around an arc of angle 3π , we have

Mκ,±μ(e3πix) = −ie±3πiμM−κ,±μ(x) , (12.76)

where we used M(a,b,−x) = e−xM(b−a,b,x), therefore

Wκ,μ(e3πix)=−ie3πiμ Γ (−2μ)
Γ ( 1

2 −μ−κ)
M−κ,μ(x)−ie−3πiμ Γ (2μ)

Γ ( 1
2 +μ−κ)

M−κ,−μ(x) .

(12.77)
To find the asymptotic behavior, we need

M−κ,μ(x)=
Γ (1+2μ)

Γ ( 1
2 +μ+κ)

e−iπκWκ,μ(eiπx)+
Γ (1+2μ)

Γ ( 1
2 +μ−κ)

e−iπ( 1
2 +μ+κ)W−κ,μ(x) .

(12.78)
As |x| → ∞, we obtain

Wκ,μ(e3πix) ∼ Aex/2xκ +Be−x/2x−κ , (12.79)

where

A = −ie3πiμ Γ (−2μ)
Γ ( 1

2 −μ−κ)
Γ (1+2μ)

Γ ( 1
2 +μ+κ)

e−πiκ +(μ →−μ) , (12.80)

and B is not needed for our purposes. After some algebra, we deduce

A = −(1+2cosπs)+O(a2) , (12.81)

where we used the identities Γ (1−x)Γ (x) = π
sinπx , Γ ( 1

2 +x)Γ ( 1
2 −x) = π

cosπx . The
monodromy around r = 1 is

M (1) = e4π(ω−ma) = A , (12.82)

therefore [16]

Reω =
1

4π
ln(1+2cosπs)+ma+O(a2) , (12.83)

in agreement with Hod’s formula for gravitational waves (s = −2) in the small-a
limit (in which Ω ≈ a, TH ≈ 1

4π ). However, it should be emphasized that these are
not asymptotic values of QNMs but bounded from above by 1/a.

12.2.2.2 Massive Perturbations

The case of massive perturbations is interesting because it reveals instabilities. As
is well-known, the Schwarzschild spacetime is stable against all kinds of perturba-
tions, massive or massless which makes the Schwarzschild geometry appropriate
to study astrophysical objects. On the other hand, Kerr spacetime is stable against
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massless perturbations but not against massive bosonic fields [17]. The instability
timescale is much larger than the age of the Universe so the problem is not expected
to have observable consequences. Nevertheless, the study of instabilities is an im-
portant subject and QNMs provide an indispensable tool.

For a massive scalar of mass μ , the radial wave equation reads

d
dr

(
Δ

dR
dr

)
+

{
ω2(r2 +a2)2 −4aMmωr +m2a2

Δ
−μ2r2 −a2ω2 − �(�+1)

}
R = 0,

(12.84)

We are interested in solving this equation for a small mass and low frequencies
(μ ,ω � 1/M) [17].

Away from the horizon (r � M), we may approximate by

d2

dr2 (rR)+
[
−k2 +

2Mμ2

r
− �(�+1)

r2

]
rR = 0 , k2 = μ2 −ω2 . (12.85)

The solution to this equation is given in terms of a confluent hypergeometric func-
tion,

R(r) = (2kr)�e−krU(�+1−Mμ2/k,2(�+1),2kr) . (12.86)

Near the horizon (r � �/|k|), we may approximate by

z(z+1)
d
dz

[
z(z+1)

dR
dz

]
+

[
P2 − �(�+1)z(z+1)

]
R = 0 , (12.87)

where P = am−2Mr+ω
r+−r−

, z = r−r+
r+−r−

. The solution to this equation is given in terms of
a hypergeometric function,

R(z) =
(

z
z+1

)iP

F(−�,�+1;1−2iP;z+1) . (12.88)

Matching the two expressions in the overlap region (M � r � �/|k|), we obtain the
frequencies

ωn ≈ μ+ iγn , n ∈ N , (12.89)

where

γn = C�nμ(μM)4(�+1) am
M−2μr+

�

∏
j=1

[
j2

(
1− a2

M2

)
+

(am
M

−2μr+

)2
]

, (12.90)

and C�n =
22(2�+1)(2�+1+n)!(�!)2

(�+1+n)2(�+2)(2�+1)2n!((2�)!)4
.

For m > 0, we have γn > 0 yielding an instability. For the fastest growing mode
(with � = 1, m = 1, n = 2 (2p state)) we have
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τ =
1
γ

=
24

aμ2(μM)7 (12.91)

which is generally large.
Notice that there is no instability in the Schwarzschild limit (a → 0) and for

massless perturbations (μ → 0); in both cases, γ → 0 and therefore the lifetime
τ → ∞.

12.2.3 Half-Integer Spin

In the case of a perturbation of half-integer spin we need to solve the Teukolsky
equation [18] with potential

V (r) = f (r)
(

�(�+1)
r2 +

1
r3

)
+

2iω j
r

− 3iω j
r2 +

j2

4r4 , (12.92)

where j is the spin of the perturbing field (e.g., j = 1/2 for Dirac fermion). We shall
set r0 = 1, for simplicity, so f (r) = 1− 1

r .
Expanding around the black-hole singularity z = ωr∗ = 0,

1
ω2 V (z) =

3i j
2z

− 4− j2

16z2 +
A

ω1/2z3/2
+O(1/ω) , A =

�(�+1)+ 1− j2

3

2
√

2
, (12.93)

we obtain the zeroth-order wave equation

d2Ψ
dz2 +

[
1− 3i j

2z
− 4− j2

16z2

]
Ψ = 0 , (12.94)

whose solutions are the Whittaker functions

Ψ (0)
± (z) = Mλ ,±μ(−2iz) , λ =

3 j
4

, μ =
j
4

. (12.95)

The calculation of the monodromy as before leads to the modes [18]

ωn

TH
= −(2n+1)πi+ ln(1+2cosπ j)+O(1/

√
n) (12.96)

in agreement with the result for integer spin ( which came from the Regge–Wheeler
equation). For a Dirac fermion, j = 1/2, so asymptotically, the real part vanishes.

The first-order correction may also be calculated as before [19]. The result is

ωn

TH
= −(2n+1)πi+ ln(1+2cosπ j)

− 2i√
−in/2

sin4πμ
b̄+A−B− + b̄−A+B+

e−4πiμA+B−− e4πiμA−B+
+O(1/n) , (12.97)
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where

b̄± =
A

4μ

∫ ∞

0

dz

z3/2
Mλ ,±μ(−2iz)Mλ ,±μ(−2iz) (12.98)

and A± = Γ (1±2μ)
Γ ( 1

2±μ+λ )
eiπ( 1

2±μ−λ ), B± = Γ (1±2μ)
Γ ( 1

2±μ−λ )
e−iπλ . This result appears to be a

complicated function of j, so let us look at specific cases.
For j = 1/2 (Dirac fermions), we obtain

ωn

TH
= −(2n+1)πi+

1+ i
2
√

n

(
�+

1
2

)2

Γ 2
(

1
4

)
+O(1/n) . (12.99)

which is in good agreement with numerical data [19].
For j = 3/2, we find

ωn

TH
= −(2n+1)πi+O(1/n) , (12.100)

so there are no first-order corrections to the spectrum.
For j = 5/2, we have

ωn

TH
= −(2n+1)πi+

1+ i√
2n

A Γ 2
(

1
4

)
+O(1/n) . (12.101)

etc.
All of the above spectra agree with the general expression we obtained for integer

spin using the Regge–Wheeler equation. The relation of the latter to the Teukolsky
equation is worth exploring further.

12.3 Anti-de Sitter Spacetime

According to the AdS/CFT correspondence, QNMs of AdS black holes are expected
to correspond to perturbations of the dual Conformal Field Theory (CFT) on the
boundary. The establishment of such a correspondence is hindered by difficulties
in solving the wave equation governing the various types of perturbation. In three
dimensions one obtains a hypergeometric equation which leads to explicit analytic
expressions for the QNMs [20, 21]. In five dimensions one obtains a Heun equation
and a derivation of analytic expressions for QNMs is no longer possible. On the
other hand, numerical results exist in four, five and seven dimensions [22–24].

12.3.1 Scalar Perturbations

To find the asymptotic form of QNMs, we need to find an approximation to the wave
equation valid in the high-frequency regime. In three dimensions the resulting wave
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equation will be an exact equation (hypergeometric equation). In five dimensions,
we shall turn the Heun equation into a hypergeometric equation which will lead to
an analytic expression for the asymptotic form of QNM frequencies in agreement
with numerical results.

12.3.1.1 AdS333

In three dimensions the wave equation for a massless scalar field is

1
R2 r

∂r

(
r3

(
1− r2

0

r2

)
∂rΦ

)
− R2

r2 − r2
0

∂ 2
t Φ+

1
r2 ∂

2
x Φ = 0 . (12.102)

Writing the wavefunction in the form

Φ = ei(ωt−px)Ψ(y), y =
r2

0

r2 , (12.103)

the wave function becomes

y2(y−1)
(
(y−1)Ψ ′)′ + ω̂2 yΨ + p̂2 y(y−1)Ψ = 0 (12.104)

to be solved in the interval 0 < y < 1, where

ω̂ =
ωR2

2r0
=

ω
4πTH

, p̂ =
pR
2r0

=
p

4πRTH
. (12.105)

For QNMs, we are interested in the solution

Ψ(y) = y(1− y)iω̂
2F1(1+ i(ω̂+ p̂),1+ i(ω̂− p̂);2;y) , (12.106)

which vanishes at the boundary (y → 0). Near the horizon (y → 1), we obtain a
mixture of ingoing and outgoing waves,

Ψ ∼ A+(1− y)−iω̂ +A−(1− y)+iω̂ , A± =
Γ (±2iω̂)

Γ (1± i(ω̂+ p̂))Γ (1± i(ω̂− p̂))
.

Setting A− = 0, we deduce the quasi-normal frequencies

ω̂ = ±p̂− in , n = 1,2, . . . (12.107)

which form a discrete spectrum of complex frequencies with Im ω̂ < 0.

12.3.1.2 AdS555

Restricting attention to the case of a large black hole, the massless scalar wave
equation reads
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1
r3 ∂r(r5 f (r)∂rΦ)− R4

r2 f (r)
∂ 2

t Φ− R2

r2 ∇2Φ = 0 , f (r) = 1− r4
0

r4 . (12.108)

Writing the solution in the form

Φ = ei(ωt−p·x)Ψ(y) , y =
r2

r2
0

, (12.109)

the radial wave equation becomes

(y2 −1)
(
y(y2 −1)Ψ ′)′ +

(
ω̂2

4
y2 − p̂2

4
(y2 −1)

)
Ψ = 0 . (12.110)

For QNMs, we are interested in the analytic solution which vanishes at the boundary
and behaves as an ingoing wave at the horizon. The wave equation contains an
additional (unphysical) singularity at y =−1, at which the wavefunction behaves as
Ψ ∼ (y + 1)±ω̂/4. Isolating the behavior of the wavefunction near the singularities
y = ±1,

Ψ(y) = (y−1)−iω̂/4(y+1)±ω̂/4F±(y) , (12.111)

we shall obtain two sets of modes with the same Im ω̂ , but opposite Re ω̂ .
F±(y) satisfies the Heun equation

y(y2 −1)F ±′′ +
{(

3− i±1
2

ω̂
)

y2 − i±1
2

ω̂y−1

}
F ′
±

+
{
ω̂
2

(
± iω̂

4
∓1− i

)
y− (i∓1)

ω̂
4
− p̂2

4

}
F± = 0 (12.112)

to be solved in a region in the complex y-plane containing |y| ≥ 1 which includes
the physical regime r > rh.

For large ω̂ , the constant terms in the polynomial coefficients of F ′ and F are
small compared with the other terms, therefore they may be dropped. The wave
equation may then be approximated by a hypergeometric equation

(y2 −1)F ′′
± +

{(
3− i±1

2
ω̂

)
y− i±1

2
ω̂

}
F ′
± +

ω̂
2

(
± iω̂

4
∓1− i

)
F± = 0 ,

(12.113)

in the asymptotic limit of large frequencies ω̂ . The acceptable solution is

F0(x) = 2F1(a+,a−;c;(y+1)/2) , a± = 1− i±1
4 ω̂±1 , c = 3

2 ±
1
2 ω̂ .
(12.114)



488 G. Siopsis

For proper behavior at the boundary (y → ∞), we demand that F be a polynomial,
which leads to the condition

a+ = −n , n = 1,2, . . . (12.115)

Indeed, it implies that F is a polynomial of order n, so as y →∞, F ∼ yn ∼ y−a+ and
Ψ ∼ y−iω̂/4y±ω̂/4y−a+ ∼ y−2, as expected.

We deduce the quasi-normal frequencies [25]

ω̂ =
ω

4πTH
= 2n(±1− i) , (12.116)

in agreement with numerical results.
It is perhaps worth mentioning that these frequencies may also be deduced by a

simple monodromy argument [25]. Considering the monodromies around the sin-
gularities, if the wavefunction has no singularities other than y = ±1, the contour
around y = +1 may be unobstructedly deformed into the contour around y = −1,
which yields

M (1)M (−1) = 1 . (12.117)

Since the respective monodromies are M (1) = eπω̂/2 and M (−1) = e∓iπω̂/2, using
Im ω̂ < 0, we deduce ω̂ = 2n(±1− i), in agreement with our resultl above.

12.3.2 Gravitational Perturbations

Next we consider gravitational perturbations of AdS Schwarzschild black holes of
arbitrary size in d dimensions. We shall derive analytic expressions for the asymp-
totic spectrum [26] including first-order corrections [27]. Our results will be in good
agreement with numerical results.

The metric is

ds2 = − f (r)dt2 +
dr2

f (r)
+ r2dΩ 2

d−2 , f (r) =
r2

R2 +1− 2μ
rd−3 . (12.118)

The radial wave equation can be cast into a Schrödinger-like form,

− d2Ψ
dr2∗

+V [r(r∗)]Ψ = ω2Ψ , (12.119)

in terms of the tortoise coordinate defined by

dr∗
dr

=
1

f (r)
. (12.120)

The potential V for the various types of perturbation has been found by Ishibashi and
Kodama [28]. For scalar, vector and tensor perturbations, we obtain, respectively,
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VS(r) =
f (r)
4r2

[
�(�+d −3)− (d −2)+

(d −1)(d −2)μ
rd−3

]−2

×
{

d(d −1)2(d −2)3μ2

R2r2d−8 − 6(d −1)(d −2)2(d −4)[�(�+d−3)− (d−2)]μ
R2rd−5

+
(d −4)(d −6)[�(�+d−3)− (d −2)]2r2

R2 +
2(d −1)2(d −2)4μ3

r3d−9

+
4(d −1)(d −2)(2d2 −11d +18)[�(�+d−3)− (d −2)]μ2

r2d−6

+
(d −1)2(d −2)2(d −4)(d −6)μ2

r2d−6

− 6(d −2)(d −6)[�(�+d−3)− (d −2)]2μ
rd−3

− 6(d −1)(d −2)2(d −4)[�(�+d−3)− (d −2)]μ
rd−3

+4[�(�+d −3)− (d −2)]3 +d(d −2)[�(�+d−3)− (d−2)]2
}

, (12.121)

VV(r) = f (r)
{

�(�+d −3)
r2 +

(d −2)(d −4) f (r)
4r2 − r f ′′′(r)

2(d −3)

}
, (12.122)

VT(r) = f (r)
{

�(�+d −3)
r2 +

(d −2)(d −4) f (r)
4r2 +

(d −2) f ′(r)
2r

}
. (12.123)

Near the black-hole singularity (r ∼ 0),

VT = − 1
4r2∗

+
AT

[−2(d −2)μ ]
1

d−2

r
− d−1

d−2
∗ + . . . , AT =

(d −3)2

2(2d −5)
+

�(�+d −3)
d −2

,

(12.124)

VV =
3

4r2∗
+

AV

[−2(d −2)μ ]
1

d−2

r
− d−1

d−2
∗ + . . . , AV =

d2 −8d +13
2(2d −15)

+
�(�+d −3)

d −2
(12.125)

and

VS = − 1
4r2∗

+
AS

[−2(d −2)μ ]
1

d−2

r
− d−1

d−2
∗ + · · · , (12.126)

where

AS =
(2d3 −24d2 +94d −116)

4(2d −5)(d −2)
+

(d2 −7d +14)[�(�+d−3)− (d −2)]
(d −1)(d −2)2 .

(12.127)

We have included only the terms which contribute to the order we are interested in.
We may summarize the behavior of the potential near the origin by
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V =
j2 −1
4r2∗

+A r
− d−1

d−2
∗ + · · · (12.128)

where j = 0 (2) for scalar and tensor (vector) perturbations.
On the other hand, near the boundary (large r),

V =
j2
∞−1

4(r∗ − r̄∗)2 + · · · , r̄∗ =
∫ ∞

0

dr
f (r)

, (12.129)

where j∞ = d − 1, d − 3 and d − 5 for tensor, vector and scalar perturbations, re-
spectively.

After rescaling the tortoise coordinate (z = ωr∗), the wave equation to first order
becomes (

H0 +ω− d−3
d−2 H1

)
Ψ = 0 , (12.130)

where

H0 =
d2

dz2 −
[

j2 −1
4z2 −1

]
, H1 = −A z−

d−1
d−2 . (12.131)

By treating H1 as a perturbation, we may expand the wave function

Ψ(z) =Ψ0(z)+ω− d−3
d−2 Ψ1(z)+ · · · (12.132)

and solve the wave equation perturbatively.
The zeroth-order wave equation,

H0Ψ0(z) = 0 , (12.133)

may be solved in terms of Bessel functions,

Ψ0(z) = A1
√

zJ j
2
(z)+A2

√
zN j

2
(z) . (12.134)

For large z, it behaves as

Ψ0(z) ∼
√

2
π

[A1 cos(z−α+)+A2 sin(z−α+)]

=
1√
2π

(A1 − iA2)e−iα+eiz +
1√
2π

(A1 + iA2)e+iα+e−iz ,

where α± = π
4 (1± j).

At the boundary (r →∞), the wavefunction ought to vanish, therefore the accept-
able solution is

Ψ0(r∗) = B
√
ω(r∗ − r̄∗) J j∞

2
(ω(r∗ − r̄∗)) . (12.135)

Indeed,Ψ → 0 as r∗ → r̄∗, as desired.



12 Analytic Calculation of Quasi-Normal Modes 491

Asymptotically (large z), it behaves as

Ψ(r∗) ∼
√

2
π

Bcos [ω(r∗ − r̄∗)+β ] , β =
π
4

(1+ j∞) . (12.136)

We ought to match this to the asymptotic form of the wavefunction in the vicinity
of the black-hole singularity along the Stokes line Imz = Im(ωr∗) = 0. This leads
to a constraint on the coefficients A1 and A2,

A1 tan(ω r̄∗ −β −α+)−A2 = 0 . (12.137)

By imposing the boundary condition at the horizon

Ψ(z) ∼ eiz , z →−∞ , (12.138)

we obtain a second constraint. To find it, we need to analytically continue the wave-
function near the black-hole singularity (z = 0) to negative values of z. A rotation
of z by −π corresponds to a rotation by −π/d −2 near the origin in the complex
r-plane. Using the known behavior of Bessel functions

Jν(e−iπz) = e−iπνJν(z) , Nν(e−iπz) = eiπνNν(z)−2icosπν Jν(z) , (12.139)

for z < 0 the wavefunction changes to

Ψ0(z) = e−iπ( j+1)/2√−z
{[

A1 − i(1+ eiπ j)A2
]

J j
2
(−z)+A2eiπ j N j

2
(−z)

}
,

(12.140)
whose asymptotic behavior is given by

Ψ ∼ e−iπ( j+1)/2
√

2π
[
A1 − i(1+2e jπi)A2

]
e−iz +

e−iπ( j+1)/2
√

2π
[A1 − iA2] eiz . (12.141)

Therefore we obtain a second constraint

A1 − i(1+2e jπi)A2 = 0 . (12.142)

The two constraints are compatible provided
∣∣∣∣ 1 −i(1+2e jπi)
tan(ω r̄∗ −β −α+) −1

∣∣∣∣ = 0 , (12.143)

which yields the quasi-normal frequencies [26]

ω r̄∗ =
π
4

(2+ j + j∞)− tan−1 i
1+2e jπi +nπ . (12.144)

The first-order correction to the above asymptotic expression may be found by
standard perturbation theory [27]. To first order, the wave equation becomes
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H0Ψ1 +H1Ψ0 = 0 . (12.145)

The solution is

Ψ1(z) =
√

zN j
2
(z)

∫ z

0
dz′

√
z′ J j

2
(z′)H1Ψ0(z′)

W

−
√

zJ j
2
(z)

∫ z

0
dz′

√
z′ N j

2
(z′)H1Ψ0(z′)

W
, (12.146)

where W = 2/π is the Wronskian.
The wavefunction to first order reads

Ψ(z) = {A1[1−b(z)]−A2a2(z)}
√

zJ j
2
(z)+{A2[1+b(z)]+A1a1(z)}

√
zN j

2
(z) ,

(12.147)
where

a1(z) =
πA

2
ω− d−3

d−2

∫ z

0
dz′ z′−

1
d−2 J j

2
(z′)J j

2
(z′)

a2(z) =
πA

2
ω− d−3

d−2

∫ z

0
dz′ z′−

1
d−2 N j

2
(z′)N j

2
(z′)

b(z) =
πA

2
ω− d−3

d−2

∫ z

0
dz′ z′−

1
d−2 J j

2
(z′)N j

2
(z′) .

and A depends on the type of perturbation.
Asymptotically, it behaves as

Ψ(z) ∼
√

2
π

[A′
1 cos(z−α+)+A′

2 sin(z−α+)] , (12.148)

where
A′

1 = [1− b̄]A1 − ā2A2 , A′
2 = [1+ b̄]A2 + ā1A1 (12.149)

and we introduced the notation

ā1 = a1(∞) , ā2 = a2(∞) , b̄ = b(∞) . (12.150)

The first constraint is modified to

A′
1 tan(ω r̄∗ −β −α+)−A′

2 = 0 . (12.151)

Explicitly,

[(1− b̄) tan(ω r̄∗ −β −α+)− ā1]A1 − [1+ b̄+ ā2 tan(ω r̄∗ −β −α+)]A2 = 0 .
(12.152)

To find the second constraint to first order, we need to approach the horizon. This
entails a rotation by −π in the z-plane. Using
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a1(e−iπz) = e−iπ d−3
d−2 e−iπ ja1(z) ,

a2(e−iπz) = e−iπ d−3
d−2

[
eiπ ja2(z)−4cos2 π j

2
a1(z)−2i(1+ eiπ j)b(z)

]
,

b(e−iπz) = e−iπ d−3
d−2

[
b(z)− i(1+ e−iπ j)a1(z)

]
.

in the limit z →−∞ we obtain

Ψ(z) ∼−ie−i jπ/2B1 cos(−z−α+)− iei jπ/2B2 sin(−z−α+) , (12.153)

where

B1 = A1 −A1e−iπ d−3
d−2 [b̄− i(1+ e−iπ j)ā1] ,

−A2e−iπ d−3
d−2

[
e+iπ jā2 −4cos2 π j

2
ā1 −2i(1+ e+iπ j)b̄

]

−i(1+ eiπ j)
[
A2 +A2e−iπ d−3

d−2 [b̄− i(1+ e−iπ j)ā1]+A1e−iπ d−3
d−2 e−iπ jā1

]

B2 = A2 +A2e−iπ d−3
d−2 [b̄− i(1+ e−iπ j)ā1]+A1e−iπ d−3

d−2 e−iπ jā1 .

Therefore the second constraint to first order reads

[1−e−iπ d−3
d−2 (iā1 + b̄)]A1− [i(1+2eiπ j)+e−iπ d−3

d−2 ((1+eiπ j)ā1 +eiπ jā2− ib̄)]A2 = 0 .
(12.154)

Compatibility of the two first-order constraints yields
∣∣∣∣∣

1+ b̄+ ā2 tan(ω r̄∗ −β −α+) i(1+2eiπ j)+ e−iπ d−3
d−2 ((1+ eiπ j)ā1 + eiπ j ā2 − ib̄)

(1− b̄) tan(ω r̄∗ −β −α+)− ā1 1− e−iπ d−3
d−2 (iā1 + b̄)

∣∣∣∣∣
= 0 . (12.155)

leading to the first-order expression for quasi-normal frequencies,

ω r̄∗ =
π
4

(2+ j + j∞)+
1
2i

ln2+nπ

−1
8

{
6ib̄−2ie−iπ d−3

d−2 b̄−9ā1 + e−iπ d−3
d−2 ā1 + ā2 − e−iπ d−3

d−2 ā2

}
,

where

ā1 =
πA

4

(
nπ
2r̄∗

)− d−3
d−2 Γ ( 1

d−2 )Γ ( j
2 + d−3

2(d−2) )

Γ 2( d−1
2(d−2) )Γ ( j

2 + d−1
2(d−2) )

ā2 =
[

1+2cot
π(d −3)
2(d −2)

cot
π
2

(
− j +

d −3
d −2

)]
ā1

b̄ = −cot
π(d −3)
2(d −2)

ā1 .
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Thus the first-order correction is ∼ O(n−
d−3
d−2 ).

The above analytic results are in good agreement with numerical results [29]
(see [27] for a detailed comparison).

12.3.3 Electromagnetic Perturbations

The electromagnetic potential in four dimensions is

VEM =
�(�+1)

r2 f (r) . (12.156)

Near the origin,

VEM =
j2 −1
4r2∗

+
�(�+1)r−3/2

∗
2
√−4μ

+ · · · , (12.157)

where j = 1. Therefore we have a vanishing potential to zeroth order. To calcu-
late the QNM spectrum we need to include first-order corrections from the outset.
Working as with gravitational perturbations, we obtain the QNMs

ω r̄∗ = nπ− i
4

lnn+
1
2i

ln
(
2(1+ i)A

√
r̄∗

)
, A =

�(�+1)
2
√−4μ

. (12.158)

Notice that the first-order correction behaves as lnn, a fact which may be associated
with gauge invariance.

As with gravitational perturbations, the above analytic results are in good agree-
ment with numerical results [29] (see [27] for a detailed comparison).

12.4 AdS/CFT Correspondence and Hydrodynamics

A second unexpected connection comes from studies carried out using the Relativistic
Heavy Ion Collider, a particle accelerator at Brookhaven National Laboratory. This ma-
chine smashes together nuclei at high energy to produce a hot, strongly interacting plasma.
Physicists have found that some of the properties of this plasma are better modelled (via
duality) as a tiny black hole in a space with extra dimensions than as the expected clump
of elementary particles in the usual four dimensions of spacetime. The prediction here is
again not a sharp one, as the string model works much better than expected. String-theory
skeptics could take the point of view that it is just a mathematical spinoff. However, one of
the repeated lessons of physics is unity - nature uses a small number of principles in diverse
ways. And so the quantum gravity that is manifesting itself in dual form at Brookhaven is
likely to be the same one that operates everywhere else in the universe.

– Joe Polchinski

There is a correspondence between N = 4 Super Yang–Mills (SYM) theory in
the large N limit and type-IIB string theory in AdS5×S5 (AdS/CFT correspondence).
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In the low-energy limit, string theory is reduced to classical supergravity and the
AdS/CFT correspondence allows one to calculate all gauge field-theory correlation
functions in the strong coupling limit leading to non-trivial predictions on the be-
havior of gauge theory fluids. For example, the entropy of N = 4 SYM theory in
the limit of large ’t Hooft coupling is precisely 3/4 its value in the zero coupling
limit.

The long-distance (low-frequency) behavior of any interacting theory at finite
temperature must be described by fluid mechanics (hydrodynamics). This leads to a
universality in physical properties because hydrodynamics implies very precise con-
straints on correlation functions of conserved currents and the stress–energy tensor.
Their correlators are fixed once a few transport coefficients are known.

12.4.1 Hydrodynamics

To study hydrodynamics of the gauge theory fluid, suppose it possesses a conserved
current jμ . For simplicity, let us set the chemical potential μ = 0, so that in thermal
equilibrium the charge density 〈 j0〉 = 0. The retarded thermal Green function is
given by

GR
μν(ω,q) = −i

∫
d4xe−iq·x θ(t)〈[ jμ(x), jν(0)]〉 , (12.159)

where q = (ω,q), x = (t,x). It determines the response of the system to a small
external source coupled to the current. For small ω and |q|, the external perturbation
varies slowly in space and time. Then a macroscopic hydrodynamic description for
its evolution is possible [30].

For a charged density obeying the diffusion equation

∂0 j0 = D∇2 j0 , (12.160)

where D is the diffusion constant with dimension of length, we obtain an over-
damped mode with dispersion relation

ω = −iDq2 , (12.161)

The corresponding retarded Green function has a pole at ω =−iDq2 in the complex
ω-plane.

Another important conserved current is the stress–energy tensor T μν . Its conser-
vation law may be written as

∂0T̃ 00 +∂iT
0i = 0 ,

∂0T 0i +∂ jT̃
i j = 0 ,

(12.162)

where



496 G. Siopsis

T̃ 00 = T 00 −ρ, ρ = 〈T 00〉 ,

T̃ i j = T i j − pδ i j = − 1
ρ+ p

[
η

(
∂iT

0 j +∂ jT
0i − 2

3
δ i j∂kT 0k

)
+ζδ i j∂kT 0k

]
,

(12.163)

and ρ (p) is the energy density (pressure) of the fluid, η (ζ ) is its shear (bulk)
viscosity.

One obtains two types of eigenmodes, the shear modes which consist of trans-
verse fluctuations of the momentum density T 0i, with a purely imaginary eigenvalue

ω = −iDq2 , D =
η

ρ+ p
, (12.164)

and a sound wave due to simultaneous fluctuations of the energy density T 00 and
the longitudinal component of momentum density T 0i, with dispersion relation

ω = usq−
i
2

1
ρ+ p

(
ζ +

4
3
η

)
q2 , u2

s =
∂ p
∂ρ

. (12.165)

In a conformal field theory, the stress-energy tensor is traceless, so

ρ = 3p , ζ = 0 , us =
1√
3

. (12.166)

12.4.2 Branes

To understand the gravitational side of the AdS/CFT correspondence, consider a
non-extremal 3-brane which is a solution of type-IIB low-energy equations of mo-
tion. In the near-horizon limit r � R where R is the AdS radius, the metric becomes

ds2
10 =

(πT R)2

u

(
− f (u)dt2 +dx2 +dy2 +dz2)+

R2

4u2 f (u)
du2 +R2dΩ 2

5 , (12.167)

where T = r0
πR2 is the Hawking temperature, and we have defined u = r2

0
r2 , f (u) =

1−u2. The horizon corresponds to u = 1 whereas spatial infinity is at u = 0.
According to the gauge theory/gravity correspondence, the above background

metric with non-extremality parameter r0 is dual to N = 4 SU(N) SYM at finite
temperature T in the limit of N → ∞, g2

Y MN → ∞. For the retarded Green function

Gμν ,λρ(ω,q) = −i
∫

d4xe−iq·x θ(t)〈[Tμν(x), Tλρ(0)]〉 . (12.168)

we deduce by considering an appropriate perturbation of the background metric
[30],

Gxy,xy(ω,q) = −N2T 2

16

(
i2πTω+q2) . (12.169)
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leading to the shear viscosity of strongly coupled N = 4 SYM plasma (Kubo for-
mula)

η = lim
ω→0

1
2ω

∫
dt dxeiωt 〈[Txy(x), Txy(0)]〉 =

π
8

N2T 3 . (12.170)

Other correlators may also be found by different perturbations of the metric. One
obtains

Gtx,tx(ω,q) =
N2πT 3q2

8(iω−Dq2)
+ · · · ,

Gtx,xz(ω,q) = − N2πT 3ω|q|
8(iω−Dq2)

+ · · · ,

Gxz,xz(ω,q) =
N2πT 3ω2

8(iω−Dq2)
+ · · · , (12.171a)

where D = 1
4πT .

From the above results, one may deduce the viscosity η . Indeed, recall from
hydrodynamics D = η

ρ+p . Using the entropy

s =
3
4

s0 =
π2

2
N2T 3 , (12.172)

where s0 is the entropy at zero coupling, and the thermodynamic equations s = ∂P
∂T ,

ρ = 3p, we deduce ρ+ p = π2

2 N2T 4, therefore

η =
π
8

N2T 3 ,
η
s

=
1

4π
, (12.173)

which agrees with the Kubo formula. It should be pointed out that there is no agree-
ment unless s = 3

4 s0, a fact which is still poorly understood.
The above result for the viscosity is based on the gravity dual of the gauge theory

fluid and should correspond to its strong coupling regime. At weak coupling, one
obtains by a direct calculation

η
s
� 1

4π
. (12.174)

Thus the viscocity coefficient η varies as a function of the ’t Hooft coupling,

η = fη(g2
YMN)N2T 3 , (12.175)

where fη(x) ∼ 1
−x2 lnx

for x � 1 and fη(x) =
π
8

for x � 1.
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12.4.3 Schwarzschild Black Holes

In the metric considered above, the horizon was flat. This corresponds to the limit
of a large black hole. For a black hole of finite size, the horizon is generally
a sphere. Then the boundary of spacetime is S3 × R. This may be conformally
mapped onto a flat Minkowski space. Then by holographic renormalization, the
AdS5-Schwarzschild black hole is dual to a spherical shell of plasma on the four-
dimensional Minkowski space which first contracts and then expands (conformal
soliton flow) [31].

Quasi-normal modes govern the properties of this plasma with long-lived modes
(i.e., of small Imω) having the most influence. For example, one obtains the ratio

v2

δ
=

1
6π

Re
ω4 −40ω2 +72

ω3 −4ω
sin

πω
2

, (12.176)

where v2 = 〈cos2φ〉 evaluated at θ = π
2 (mid-rapidity) and averaged with respect

to the energy density at late times; δ = 〈y2−x2〉
〈y2+x2〉 is the eccentricity at time t = 0.

Numerically, v2
δ = 0.37, which compares well with the result from RHIC data, v2

δ ≈
0.323 [32].

Another observable is the thermalization time which is found to be

τ =
1

2|Imω| ≈
1

8.6Tpeak
≈ 0.08 fm/c , Tpeak = 300 MeV , (12.177)

not in agreement with the RHIC result τ ∼ 0.6 fm/c [33], but still encourag-
ingly small. For comparison, the corresponding result from perturbative QCD is
τ � 2.5 fm/c [34, 35].

The above results motivate the calculation of low-lying QNMs. Earlier, we calcu-
lated analytically the asymptotic form of QNMs for large black holes. We obtained
frequencies which were proportional to the horizon radius r0. We found an infi-
nite spectrum, however we missed the lowest frequencies which are inversely pro-
portional to r0. The latter are important in the understanding of the hydrodynamic
behavior of the gauge theory fluid via the AdS/CFT correspondence.

12.4.3.1 Vector Perturbations

We start with vector perturbations and work in a d-dimensional Schwarzschild back-
ground. It is convenient to introduce the coordinate [36]

u =
( r0

r

)d−3
. (12.178)
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The wave equation becomes

− (d −3)2u
d−4
d−3 f̂ (u)

(
u

d−4
d−3 f̂ (u)Ψ ′

)′
+V̂V(u)Ψ = ω̂2Ψ , ω̂ =

ω
r0

, (12.179)

where prime denotes differentiation with respect to u and we have defined

f̂ (u) ≡ f (r)
r2 = 1−u

2
d−3

(
u− 1−u

r2
0

)
, (12.180)

V̂V(u)≡ VV

r2
0

= f̂ (u)

⎧⎪⎨
⎪⎩L̂2 +

(d −2)(d −4)
4

u−
2

d−3 f̂ (u)−
(d −1)(d −2)

(
1+ 1

r2
0

)
2

u

⎫⎪⎬
⎪⎭

(12.181)
where L̂2 = �(�+d−3)

r2
0

.

First let us consider the large black-hole limit r0 →∞ keeping ω̂ and L̂ fixed (small).
Factoring out the behavior at the horizon (u = 1)

Ψ = (1−u)−i ω̂
d−1 F(u) , (12.182)

the wave equation simplifies to

A F ′′ +Bω̂F ′ +Cω̂,L̂F = 0 , (12.183)

where

A = −(d −3)2u
2d−8
d−3 (1−u

d−1
d−3 )

Bω̂ = −(d −3)[d −4− (2d −5)u
d−1
d−3 ]u

d−5
d−3 −2(d −3)2 iω̂

d −1
u

2d−8
d−3 (1−u

d−1
d−3 )

1−u

Cω̂,L̂ = L̂2 +
(d −2)[d −4−3(d −2)u

d−1
d−3 ]

4
u−

2
d−3

− ω̂2

1−u
d−1
d−3

+(d −3)2 ω̂2

(d −1)2

u
2d−8
d−3 (1−u

d−1
d−3 )

(1−u)2

−(d −3)
iω̂

d −1
[d −4− (2d −5)u

d−1
d−3 ]u

d−5
d−3

1−u
− (d −3)2 iω̂

d −1
u

2d−8
d−3 (1−u

d−1
d−3 )

(1−u)2 .

We may solve this equation perturbatively by separating

(H0 +H1)F = 0 (12.184)

where

H0F ≡ A F ′′ +B0F ′ +C0,0F ,

H1F ≡ (Bω̂ −B0)F ′ +(Cω̂,L̂ −C0,0)F .
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Expanding the wavefunction perturbatively,

F = F0 +F1 + · · · (12.185)

at zeroth order the wave equation reads

H0F0 = 0 , (12.186)

whose acceptable solution is

F0 = u
d−2

2(d−3) , (12.187)

being regular at both the horizon (u = 1) and the boundary (u = 0, orΨ ∼ r−
d−2

2 → 0
as r → ∞). The Wronskian is

W =
1

u
d−4
d−3 (1−u

d−1
d−3 )

(12.188)

and another linearly independent solution is

F̌0 = F0

∫
W

F2
0

, (12.189)

which is unacceptable because it diverges at both the horizon (F̌0 ∼ ln(1− u) for

u ≈ 1) and the boundary (F̌0 ∼ u
− d−4

2(d−3) for u ≈ 0, orΨ ∼ r
d−4

2 → ∞ as r → ∞).
At first order the wave equation reads

H0F1 = −H1F0 , (12.190)

whose solution may be written as

F1 = F0

∫
W

F2
0

∫
F0H1F0

AW
. (12.191)

The limits of the inner integral may be adjusted at will because this amounts to
adding an arbitrary amount of the unacceptable solution. To ensure regularity at the
horizon, choose one of the limits of integration at u = 1 rendering the integrand
regular at the horizon. Then at the boundary (u = 0),

F1 = F̌0

∫ 1

0

F0H1F0

AW
+ regular terms . (12.192)

The coefficient of the singularity ought to vanish,

∫ 1

0

F0H1F0

AW
= 0 , (12.193)

which yields a constraint on the parameters (dispersion relation)

a0L̂2 − ia1ω̂−a2ω̂2 = 0 . (12.194)
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After some algebra, we arrive at

a0 =
d −3
d −1

, a1 = d −3 . (12.195)

The coefficient a2 may also be found explicitly for each dimension d, but it cannot
be written as a function of d in closed form. It does not contribute to the dispersion
relation at lowest order. E.g., for d = 4,5, we obtain, respectively

a2 =
65

108
− 1

3
ln3 ,

5
6
− 1

2
ln2 . (12.196)

Equation (12.194) is quadratic in ω̂ and has two solutions,

ω̂0 ≈−i
L̂2

d −1
, ω̂1 ≈−i

d −3
a2

+ i
L̂2

d −1
. (12.197)

In terms of the frequency ω and the quantum number �,

ω0 ≈−i
�(�+d−3)
(d −1)r0

,
ω1

r0
≈−i

d −3
a2

+ i
�(�+d−3)
(d −1)r2

0

. (12.198)

The smaller of the two, ω0, is inversely proportional to the radius of the horizon
and is not included in the asymptotic spectrum. The other solution, ω1, is a crude
estimate of the first overtone in the asymptotic spectrum, nevertheless it shares two
important features with the asymptotic spectrum: it is proportional to r0 and its
dependence on � is O(1/r2

0). The approximation may be improved by including
higher-order terms. This increases the degree of the polynomial in the dispersion
relation (12.194) whose roots then yield approximate values of more QNMs. This
method reproduces the asymptotic spectrum derived earlier albeit not in an efficient
way.

To include finite size effects, we shall use perturbation theory (assuming 1/r0 is
small) and replace H1 by

H ′
1 = H1 +

1

r2
0

HH , (12.199)

where
HHF ≡ AHF ′′ +BHF ′ +CHF . (12.200)

The coefficients may be easily deduced by collecting O(1/r2
0) terms in the exact

wave equation. We obtain

AH = −2(d −3)2u2(1−u)

BH = −(d −3)u

[
(d −3)(2−3u)− (d−1)

1−u

1−u
d−1
d−3

u
d−1
d−3

]

CH =
d −2

2

[
d −4− (2d −5)u− (d −1)

1−u

1−u
d−1
d−3

u
d−1
d−3

]
.
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Interestingly, the zeroth order wavefunction F0 is an eigenfunction of HH ,

HHF0 = −(d −2)F0 , (12.201)

therefore the first-order finite-size effect is a simple shift of the angular momentum
operator

L̂2 → L̂2 − d −2

r2
0

. (12.202)

The QNMs of lowest frequency are modified to

ω0 = −i
�(�+d−3)− (d −2)

(d −1)r0
+O(1/r2

0) . (12.203)

For d = 4,5, we have respectively,

ω0 = −i
(�−1)(�+2)

3r0
, −i

(�+1)2 −4
4r0

, (12.204)

in agreement with numerical results [29, 31].
According to the AdS/CFT correspondence, dual to the AdS Schwarzschild black

hole is a gauge theory fluid on the boundary of AdS (Sd−2 × R). Consider the fluid
dynamics ansatz

ui = K e−iΩτ
Vi , (12.205)

where ui is the (small) velocity of a point in the fluid, and Vi a vector harmonic
on Sd−2. Demanding that this ansatz satisfy the standard equations of linearized
hydrodynamics, one arrives at a constraint on the frequency of the perturbation Ω
which yields [37]

Ω = −i
�(�+d−3)− (d −2)

(d −1)r0
+O(1/r2

0) , (12.206)

in perfect agreement with its dual counterpart.

12.4.3.2 Scalar Perturbations

Next we consider scalar perturbations which are calculationally more involved but
phenomenologically more important because their spectrum contains the lowest fre-
quencies. For a scalar perturbation we ought to replace the potential V̂V by

V̂S(u) =
f̂ (u)

4

[
m̂+

(
1+

1

r2
0

)
u

]−2

×
{

d(d −2)
(

1+
1

r2
0

)2

u
2d−8
d−3 −6(d −2)(d −4)m̂

(
1+

1

r2
0

)
u

d−5
d−3

+(d −4)(d −6)m̂2u−
2

d−3 +(d −2)2
(

1+
1

r2
0

)3

u3
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+2(2d2 −11d +18)m̂
(

1+
1

r2
0

)2

u2

+
(d −4)(d −6)

(
1+ 1

r2
0

)2

r2
0

u2 −3(d −2)(d −6)m̂2
(

1+
1

r2
0

)
u

−
6(d −2)(d −4)m̂

(
1+ 1

r2
0

)
r2

0

u+2(d −1)(d −2)m̂3 +d(d −2)
m̂2

r2
0

}
,

(12.207)

where m̂ = 2 �(�+d−3)−(d−2)
(d−1)(d−2)r2

0
= 2(�+d−2)(�−1)

(d−1)(d−2)r2
0

.

In the large black-hole limit r0 →∞ with m̂ fixed (small), the potential simplifies
to

V̂ (0)
S (u) =

1−u
d−1
d−3

4(m̂+u)2

{
d(d −2)u

2d−8
d−3 −6(d −2)(d −4)m̂u

d−5
d−3

+(d −4)(d −6)m̂2u−
2

d−3 +(d −2)2u3

+2(2d2 −11d +18)m̂u2 −3(d −2)(d −6)m̂2u+2(d −1)(d −2)m̂3

}
.

(12.208)

The wave equation has an additional singularity due to the double pole of the scalar
potential at u = −m̂. It is desirable to factor out the behavior not only at the horizon
but also at the boundary and the pole of the scalar potential,

Ψ = (1−u)−i ω̂
d−1

u
d−4

2(d−3)

m̂+u
F(u) . (12.209)

Then the wave equation reads

A F ′′ +Bω̂F ′ +Cω̂F = 0 . (12.210)

where

A = −(d −3)2u
2d−8
d−3

(
1−u

d−1
d−3

)

Bω̂ = −(d −3)u
2d−8
d−3

(
1−u

d−1
d−3

)[
d −4

u
− 2(d −3)

m̂+u

]

−(d −3)
[
d −4− (2d −5)u

d−1
d−3

]
u

d−5
d−3 −2(d −3)2 iω̂

d −1

u
2d−8
d−3

(
1−u

d−1
d−3

)
1−u
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Cω̂ = −u
2d−8
d−3

(
1−u

d−1
d−3

)[
− (d −2)(d −4)

4u2 − (d −3)(d −4)
u(m̂+u)

+
2(d −3)2

(m̂+u)2

]

−
[{

d −4− (2d −5)u
d−1
d−3

}
u

d−5
d−3 +2(d −3)

iω̂
d −1

u
2d−8
d−3 (1−u

d−1
d−3 )

1−u

]

×
[

d −4
2u

− d −3
m̂+u

]

−(d −3)
iω̂

d −1

[
d −4− (2d −5)u

d−1
d−3

]
u

d−5
d−3

1−u
− (d −3)2 iω̂

d −1

u
2d−8
d−3

(
1−u

d−1
d−3

)
(1−u)2

+
V̂ (0)

S (u)− ω̂2

1−u
d−1
d−3

+(d −3)2 ω̂2

(d −1)2

u
2d−8
d−3

(
1−u

d−1
d−3

)
(1−u)2 .

We shall define zeroth-order wave equation as H0F0 = 0, where

H0F ≡ A F ′′ +B0F ′ . (12.211)

The acceptable zeroth-order solution is

F0(u) = 1 (12.212)

which is plainly regular at all singular points (u = 0,1,−m̂). It corresponds to a
wavefunction vanishing at the boundary (Ψ ∼ r−

d−4
2 as r → ∞).

The Wronskian is

W =
(m̂+u)2

u
2d−8
d−3 (1−u

d−1
d−3 )

, (12.213)

and an unacceptable solution is F̌0 =
∫

W . It can be written in terms of hyperge-

ometric functions. For d ≥ 6, it has a singularity at the boundary, F̌0 ∼ u−
d−5
d−3 for

u ≈ 0, orΨ ∼ r
d−6

2 → ∞ as r → ∞. For d = 5, the acceptable wavefunction behaves
as r−1/2 whereas the unacceptable one behaves as r−1/2 lnr. For d = 4, the roles of
F0 and F̌0 are reversed, however the results still valid because the correct boundary
condition at the boundary is a Robin boundary condition [36, 37]. Finally, we note
that F̌0 is also singular (logarithmically) at the horizon (u = 1).

Working as in the case of vector modes, we arrive at the first-order constraint

∫ 1

0

Cω̂
AW

= 0 , (12.214)

because H1F0 ≡ (Bω̂ −B0)F ′
0 +Cω̂F0 = Cω̂ . This leads to the dispersion relation

a0 −a1iω̂−a2ω̂2 = 0 . (12.215)
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After some algebra, we obtain

a0 =
d −1

2
1+(d −2)m̂

(1+ m̂)2 , a1 =
d −3

(1+ m̂)2 , a2 =
1
m̂
{1+O(m̂)} . (12.216)

For small m̂, the quadratic equation has solutions

ω̂±
0 ≈−i

d −3
2

m̂±
√

d −1
2

m̂ , (12.217)

related to each other by ω̂+
0 =−ω̂−∗

0 , which is a general symmetry of the spectrum.
Finite size effects at first order amount to a shift of the coefficient a0 in the

dispersion relation

a0 → a0 +
1

r2
0

aH . (12.218)

After some tedious but straightforward algebra, we obtain

aH =
1
m̂
{1+O(m̂)} . (12.219)

The modified dispersion relation yields the modes

ω̂±
0 ≈−i

d −3
2

m̂±
√

d −1
2

m̂+1 . (12.220)

In terms of the quantum number �,

ω±
0 ≈−i(d −3)

�(�+d −3)− (d −2)
(d −1)(d −2)r0

±
√

�(�+d −3)
d −2

, (12.221)

in agreement with numerical results [31].
Notice that the imaginary part is inversely proportional to r0, as in vector case.

In the scalar case, we also obtained a finite real part independent of r0. It yields the
speed of sound vs = 1√

d−2
which is the correct value in the presence of conformal

invariance.
Turning to the implications of the above results for the AdS/CFT correspondence,

we may perturb the gauge theory fluid on the boundary of AdS (Sd−2×R) using the
ansatz

ui = K e−iΩτ∇iS , δ p = K ′e−iΩτ
S , (12.222)

where ui is the (small) velocity of a point in the fluid and δ p is a pressure per-
turbation. They are both given in terms of S, a scalar harmonic on Sd−2. De-
manding that this ansatz satisfy the equations of linearized hydrodynamics, one
obtains a frequency of perturbation Ω in perfect agreement with our analytic
result [36, 37].
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12.4.3.3 Tensor Perturbations

Finally, for completeness we discuss the case of tensor perturbations. Unlike the
other two cases, the asymptotic spectrum of tensor perturbations is the entire spec-
trum. To see this, note that in the large black-hole limit, the wave equation reads

− (d −3)2(u
2d−8
d−3 −u3)Ψ ′′ − (d −3)[(d −4)u

d−5
d−3 − (2d −5)u2]Ψ ′

+

{
L̂2 +

d(d −2)
4

u−
2

d−3 +
(d −2)2

4
u− ω̂2

1−u
d−1
d−3

}
Ψ = 0 .

For the zeroth-order equation, we may set L̂ = 0 = ω̂ . The resulting equation may
be solved exactly. Two linearly independent solutions are (Ψ = F0 at zeroth order)

F0(u) = u
d−2

2(d−3) , F̌0(u) = u
− d−2

2(d−3) ln
(

1−u
d−1
d−3

)
. (12.223)

Neither behaves nicely at both ends (u = 0,1). Therefore both are unacceptable
which makes it impossible to build a perturbation theory to calculate small frequen-
cies which are inversely proportional to r0. This negative result is in agreement with
numerical results [29, 31] and in accordance with the AdS/CFT correspondence.
Indeed, there is no ansatz that can be built from tensor spherical harmonics Ti j

satisfying the linearized hydrodynamic equations, because of the conservation and
tracelessness properties of Ti j.

12.5 Conclusion

We discussed the calculation of analytic asymptotic expressions for quasi-normal
modes of various perturbations of black holes in asymptotically flat as well as anti-
de Sitter spaces. We also showed how perturbative corrections to the asymptotic
expressions can be systematically calculated.

In view of the AdS/CFT correspondence, in AdS spaces we concentrated on low-
frequency modes because they govern the hydrodynamic behavior of the gauge the-
ory fluid which is dual to the black hole. Thus, these modes provide a powerful tool
in understanding the hydrodynamics of a gauge theory at strong coupling. They may
lead to experimental consequences pertaining to the quark-gluon plasma produced
in heavy ion collisions at RHIC and the LHC.
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